Tìm tổng tất cả các số nguyên x thỏa mãn \(-5\le x\le6\)
Mọi người giúp mình với ạ!
Tìm tổng của tất cả các số nguyên thoả mãn:
a) -10 < x < 6
b) -1 \(\le\) x \(\le\) 4
c) -6 < x \(\le\) 4
d) -4 < x < 4
( giúp mik với ạ).
a) -10 < x < 6
Các số nguyên x thỏa mãn là: -9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
Tổng của các số nguyên thỏa mãn là: -9+(-8)+(-7)+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+1+2+3+4+5 = -30
b)
b) -1 x 4
tìm x thỏa mãn là: -1; 0;1; 2;3;4
tổng các số nguyên thỏa mãn là: -1+0+1+2+3+4=9
c)
c) -6 < x 4
tìm x thỏa mãn là: -5; -4; -3; -2; -1; 0;1;2;3;4
tổng các số nguyên thỏa mãn là:-5+( -4)+( -3)+( -2)+( -1)+ 0+1+2+3+4= -5
d) -4 < x < 4
tìm x thỏa mãn là: -3; -2; -1; 0;1;2;3
tổng các số nguyên thỏa mãn là: -3 + (-2) + (-1) + 0 +1+2+3=0
a, \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Tổng tất cả các số nguyên x thoả mãn là:
(-5 + 5) + (-4 +4) + (-3 +3) + (-2 +2) + (-1+1) + 0 + (-9) + (-8) + (-7) + (-6) = -30
Tương tự em làm câu b,c,d rồi đăng lên nhờ mn check nhé
Tính tổng tất cả các số nguyên x thỏa mãn :
Giá trị tuyệt đối của x < 2013
Mọi người giúp mình với nhé ! Thank
Các số thỏa mãn đề bài là -2012;-2011;-2010;...;2010;2011;2012. Tổng các số đó =0
Ta có |x| < 2013
=> x={-2013;-2012;.....;-1;0;1;.....;2013}
Vậy tổng x = {-2013+-2012+.....+-1+0+1+.....+2012+2013}
= (-2013+2013)+(-2012+2012)+....+(-1+1)+0
= 0+0+...+0+0
=0
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Bài 4:
Ta đặt: \(S=6^m+2^n+2\)
TH1: n chẵn thì:
\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)
Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)
Đồng thời S là scp
Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)
\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)
Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ
Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)
Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)
Thế vào ban đầu: \(S=8+2^n=36k^2\)
Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)
\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)
\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)
Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))
Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)
TH2: n là số lẻ
\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)
\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn
\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ
Chia tiếp thành 2TH nhỏ:
TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ
Ta thu đc: m=1 và thế vào ban đầu
\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)
\(\Leftrightarrow2^{n-2}+2=k^2\)
Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)
Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)
\(\Leftrightarrow2^{n-3}+1=2t^2\)
\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3
Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)
TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ
Suy ra: n=1
Thế vào trên: \(6^m+4=4k^2\)
\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)
Và \(6^p-6^q=4\)
\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)
\(\Rightarrow k\notin Z\)
Vậy \(\left(m;n\right)=\left(1;3\right)\)
P/S: mk không kiểm lại nên có thể sai
a, Tìm tất cả các số nguyên x thỏa mãn -11<x<9. Tính tổng tất cả các số nguyên vừa tìm đc
b,Tìm tất cả các số nguyên x thỏa mãn -9<x<10.Tính tổng các số nguyên vừa tìm đc
c,Tìm tất cả các số nguyên x thỏa mãn -15<x<16.Tính tổng tất cả các số nguyên vừa tìm đc
Phần b và c là dấu lớn hơn hoặc bằng nhé !!
MN GIÚP MÌNH VỚI Ạ !!!!
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
tìm tổng của tất cả các số nguyễn thỏa mãn :
-1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 4
mọi người giúp mình với nha
Tìm tổng của tất cả các số nguyên x thỏa mãn x2<2016
giúp mình với mình cần gấp mình tick cho
Ta có: (-45)2= 2025 ;452= 2025 mà 2025 > 2016 nên x2 < 2025 => x < 45; x < -45
=> x \(\in\){-44; -43; -42; ...................; 44}
Tổng các số nguyên x đó là: (-44)+ (-43) + (-42)+...+43+44
= (-44+44) +(-43+43)+.......+ (-1+1) +0
= 0 +0 +0+0+.....+0
= 0
Vậy....
Ko chắc nha
Tìm tổng của tất cả các số nguyên thoả mãn:
a) -4 < x < 3
b) -5 < x < 5
( Giúp mik với ạ).
-4 < x < 3
các số nguyên thỏa mãn -4 < x < 3 là các số nguyên thuộc dãy số sau:
-3; -2; -1; 0; 1; 2;
Tổng các số nguyên thỏa mãn đề bài là:
(-3) + (-2) +(-1) + 0 + 1 + 2
= (-3) + ( -2 + 2) + ( -1 + 1)
= -3 + 0 + 0
= -3
b, -5 < x < 5
Các số nguyên thỏa mãn -5 < x < 5 là các số thuộc dãy số sau :
-4; -3; -2; -1; 0; 1; 2; 3; 4
Tổng các số nguyên thỏa mãn đề bài là:
-4 + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
( -4 + 4) + ( -3 + 3) + ( -2 + 2) + (-1 + 1) + 0
= 0 + 0 + 0 + 0 + 0
= 0
Tìm tổng của tất cả các số nguyên x thỏa mãn:
a,– 2 ≤ x ≤ 5
b,– 8 < x ≤ 6
GIÚP MÌNH VS
a) \(x\in\left\{-2;-1;0;1;2;3;4;5\right\}\)
b)\(x\in\left\{-7;-6;-5;-4;...;5;6\right\}\)
a,– 2 ≤ x ≤ 5
<=> \(x\in\left\{-2;-3;...;5\right\}\)
Tổng: (-2+2)+(-3+3)+...+0+4+5=9
b,– 8 < x ≤ 6
<=>\(x\in\left\{-7;-6;...;6\right\}\)
Tổng: (-6+6)+(-5+5)+...+0+-7=-7
a,– 2 ≤ x ≤ 5
Vì – 2 ≤ x ≤ 5 mà x \(\inℤ\)
nên x \(\in\left\{-2;-1;0;1;2;3;4;5\right\}\)
Do đó tổng các số nguyên x là:
(-2 + 2 ) + (-1+1) + (3 + 4 + 5 ) + 0
= 0 + 0 + 12 + 0
= 12
b,– 8 < x ≤ 6
Vì – 8 < x ≤ 6 mà x \(\inℤ\)
nên x \(\in\left\{-8;-7;-6;...;-1;0;1;2;3;4;5;6\right\}\)
Do đó tổng các số nguyên x là:
(-6 + 6) + ( -5 + 5 ) + (-4 + 4 ) + (-3 + 3 ) + (-2 + 2 ) + (-1+ 1) + ( -8 - 7) + 0
= 0 + 0 + 0 + 0 + 0 + 0 + (-15) + 0
= -15
# HOK TỐT #
Tìm tất cả các số nguyên tố x,y,z thỏa mãn: (x+1)(y+2)(z+3)=4xyz MONG MỌI NGƯỜI GIÚP ĐỠ
Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)