Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Mai Anh
Xem chi tiết
Phan Thành Tiến
26 tháng 3 2018 lúc 20:01

bài này đc sài máy tính hem. cách sài máy tính lẹ hơn

Vũ Mai Anh
26 tháng 3 2018 lúc 20:04

tùy bạn

Phan Thành Tiến
26 tháng 3 2018 lúc 20:10

nếu đc dùng máy tỉnh bỏ túi thì lập trình trong máy vinacal hoặc casio như sau:

x=x+1:y= căng bậc ba của x(x^2+2x+3)+2

hổng bik viết dấu căng bậc ba

gán cho x chạy tuef 1 thử kím cái nào y nguyên lun thì lấy, khỏi mất công phân tích hé hé:)))

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 11:07

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

Đặng Nga
Xem chi tiết
Nguyễn Ngọc Lam Giang
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
27 tháng 3 2020 lúc 8:31

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

Khách vãng lai đã xóa
Phùng Gia Bảo
27 tháng 3 2020 lúc 9:14

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Khách vãng lai đã xóa
Lê Nhật Khôi
27 tháng 3 2020 lúc 10:53

Bài 4:

Ta đặt: \(S=6^m+2^n+2\)

TH1: n chẵn thì:

\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)

Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)

Đồng thời S là scp

Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)

\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)

Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ

Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)

Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)

Thế vào ban đầu: \(S=8+2^n=36k^2\)

Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)

\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)

\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)

Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))

Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)

TH2: n là số lẻ

\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)

\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn

\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ

Chia tiếp thành 2TH nhỏ: 

TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ

Ta thu đc: m=1 và thế vào ban đầu

\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)

\(\Leftrightarrow2^{n-2}+2=k^2\)

Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)

Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)

\(\Leftrightarrow2^{n-3}+1=2t^2\)

\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3

Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)

TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ

Suy ra: n=1

Thế vào trên: \(6^m+4=4k^2\)

\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)

Và \(6^p-6^q=4\)

\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)

\(\Rightarrow k\notin Z\)

Vậy \(\left(m;n\right)=\left(1;3\right)\)

P/S: mk không kiểm lại nên có thể sai

Khách vãng lai đã xóa
Gì Cũng Được
Xem chi tiết
Hattori Heiji
21 tháng 3 2018 lúc 20:27

x^2y là sao bạn hình như sai ở chỗ đó

Gì Cũng Được
21 tháng 3 2018 lúc 20:30

đó là (x^2)*y nha

Hattori Heiji
21 tháng 3 2018 lúc 20:36

x^3-x^2.y+2x-y=2

=>x^2(x-y)+(x-y)+(x-2)=0

=>(x^2+1)(x-y)+(x-2)=0

Có x^2+1 >=0 với mọi x

để PT trên bằng 0 thì x-y=0 <=>x=y

Và x-2=0 <=> x=2

Vậy x=y=2 thì Pt đã cho bằng 0 

Sợ không đúng thôi

^^
Xem chi tiết
Aug.21
12 tháng 4 2019 lúc 12:23

 Điều kiện \(8x+1\ge0\Leftrightarrow8x\ge-1\Leftrightarrow x\ge-\frac{1}{8}\)

Cách 1: Do \(x\in Z\)nên \(x\ge0\).Ta có:

               \(x^3+8=7\sqrt{8x+1}\Leftrightarrow\left(x^3+8^2\right)=(7\sqrt{8x+1})^2\)

\(\Leftrightarrow x^6+16x^3+64=49\left(8x+1\right)\Leftrightarrow x^6+16x^3+392x+15=0\)

\(\Leftrightarrow x^6-3x^5+3x^5-9x^4+9x^4-27x^3+43x^3-129x^2+129x^2-387x-5x+15=0\)

\(\Leftrightarrow x^5\left(x-3\right)+3x^4\left(x-3\right)+9x^3\left(x-3\right)+43x^2\left(x-3\right)+129x\left(x-3\right)-5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^5+3x^4+9x^3+43x^2+129x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^5+3x^4+9x^3+43x^2+129x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^5+3x^4+9x^3+43x^2+129x-5=0\left(\cdot\right)\end{cases}}\)

\(x=0\)là nghiệm của \(\left(\cdot\right)\)vì \(-5\ne0\)

\(x\ne0,\)ta có \(x\ge0\)và \(x\in Z\)nên \(x\ge1\)

Do đó \(x^5+3x^4+9x^3+43x^2+129x>5\)

\(\Rightarrow\left(\cdot\right)\)vô nghiện nguyên khác 0

Vậyphương trình chỉ có 1 nghiệm nguyên là \(x=3\)

Aug.21
12 tháng 4 2019 lúc 12:27

Cách 2\(x\ge0;x\in Z\)

Với \(x=0;1;2;4\)đẳng thức ko thỏa mãn

Với \(x=3\)đẳng thức thỏa mãn 

Với \(x\ge5\)ta có :

\(7\sqrt{8x+1}>7\sqrt{8x+1}=21\sqrt{x}< 21x< x^2.x=x^3< x^3+8\)

Vậy phương trình chỉ có 1 nghiệm là \(x=3\)

Aug.21
12 tháng 4 2019 lúc 20:02

ở cách 2 ý:(dòng thứ 5 ) mk sử lại nha:

\(7\sqrt{8x+1}>7\sqrt{8x+x}=21\sqrt{x}< 21x< x^2.x=x^3< x^3+8\)

sorry !!

quản đức phú
Xem chi tiết
tth_new
27 tháng 2 2019 lúc 19:34

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

Hieu Do
Xem chi tiết
Khánh Vân Phạm
Xem chi tiết