Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh Lê
Xem chi tiết
Zero Two
Xem chi tiết
Nguyễn Huy Tú
26 tháng 4 2021 lúc 20:55

a, \(\left|2x-1\right|-7=0\Leftrightarrow\left|2x-1\right|=7\)

Với \(x\ge\frac{1}{2}\)phương trình có dạng : 

\(2x-1=7\Leftrightarrow x=4\)( tm ) 

Với \(x< \frac{1}{2}\)phương trình có dạng : 

\(-2x+1=7\Leftrightarrow x=-3\)( tm )

Vậy tập nghiệm của phương trình là S = { -3 ; 4 } 

Khách vãng lai đã xóa
Nguyễn Huy Tú
26 tháng 4 2021 lúc 21:00

b, \(\frac{9x^2}{2\left(1-9x^2\right)}=\frac{3x}{6x-2}-\frac{1+9x}{3+9x}\)ĐK : \(x\ne\pm\frac{1}{3}\)

\(\Leftrightarrow-\frac{9x^2}{2\left(3x-1\right)\left(3x+1\right)}=\frac{3x}{2\left(3x-1\right)}-\frac{1+9x}{3\left(3x+1\right)}\)

\(\Leftrightarrow\frac{-27x^2}{6\left(3x-1\right)\left(3x+1\right)}=\frac{9x\left(3x+1\right)}{6\left(3x-1\right)\left(3x+1\right)}-\frac{2\left(1-9x\right)\left(3x+1\right)}{6\left(3x-1\right)\left(3x+1\right)}\)

\(\Leftrightarrow-27x^2=27x^2-9x-2\left(3x-27x^2\right)\)

\(\Leftrightarrow108x^2-15x=0\Leftrightarrow3x\left(36x-5\right)=0\Leftrightarrow x=0;x=\frac{5}{36}\)( tm )

Vậy tập nghiệm của phương trình là S = { 0 ; 5/36 } 

Khách vãng lai đã xóa
Nhã ca Mai phạm
Xem chi tiết
Nguyên Vương
18 tháng 4 2017 lúc 22:20

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé 

Hot Girl
Xem chi tiết
Biển Ác Ma
30 tháng 7 2019 lúc 14:18

\(\left|2x-\frac{1}{2}\right|+1=3x\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)

Nguyễn Đức Thành
Xem chi tiết
Phạm Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 14:32

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

luan the manh
Xem chi tiết
Tran Le Khanh Linh
10 tháng 3 2020 lúc 11:12

\(x^2+\frac{9x^3}{\left(x+3\right)^2}=40\left(x\ne-3\right)\)

\(\Leftrightarrow x^2+\left(x+3\right)^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40x^2+240x+360\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow\left(x^3+10x+30\right)\left(x-6\right)\left(x+2\right)=0\)

Khi x-6=0  hoặc x+2=0 <=> x=6 hoặc x=-2

Khi \(x^3+10x+30=0\)

\(x=\frac{-10+2\sqrt{5}}{2};x=\frac{-10-2\sqrt{5}}{2}\)

Hơi khó hiểu 1 chút, bạn cố gắng nhé

Khách vãng lai đã xóa
Đặng Tú Phương
10 tháng 3 2020 lúc 12:29

\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40^{\left(1\right)}\)

\(ĐKXĐ:x\ne-3\)

\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{3x}{x+3}+\frac{\left(3x\right)^2}{\left(x+3\right)^2}+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}=40\)

\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}=40\)

Đặt \(t=\frac{x^2}{x+3}\)ta có 

\(t^2+6t=40\)

\(\Leftrightarrow\left(t-4\right)\left(t+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-4=0\\t+10=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-10\end{cases}}\)

+) Với t =4 ta có 

\(\frac{x^2}{x+3}=4\)

\(\Rightarrow4\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)

+) với x=-10 ta có 

\(\frac{x^2}{x+3}=-10\)

\(\Rightarrow-10\left(x+3\right)=x^2\)

\(\Leftrightarrow x^2+10x+30=0\)

\(\Leftrightarrow\left(x+5\right)^2=-5\)

Phương trình vô nghiệm 

Vậy............................

Khách vãng lai đã xóa
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Shinichi
Xem chi tiết
pokiwar
20 tháng 8 2019 lúc 8:29

A=1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) + 1/(x-5)(x-6)=1/8 (ĐKXĐ: x#2,x#3,x#4,x#5,x#6)

A= 1/x-2 -1/x-3 + 1/x-3 -1/x-4 .....-1/x-6=1/8

=>1/x-2 -1/x-6=1/8

=>8(x-6)-8(x-2)=(x-2)(x-6)

=> 8x-48-8x+16=x^2-8x+12

=> x^2-8x-20=0

=> (x-10)(x+2)=0 => x=10,x=-2 thuộc ĐKXĐ

Có cần thế ko ạ ??? Shinichi

Điều kiện xác định \(\hept{\begin{cases}x\ne2\\x\ne\\x\ne4\end{cases}3}\)

                              \(\hept{\begin{cases}x\ne5\\x\ne6\end{cases}}\)

Ta có : \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

\(x^2-7x+12=\left(x-3\right)\left(x-4\right)\)

\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)

\(x^2-11+30=\left(x-5\right)\left(x-6\right)\)

Phương trình đã tương đương với 

\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\)

\(\Leftrightarrow x^2-8x-20=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)

\(x-10=0\Leftrightarrow x=10\)

hoặc 

\(x+2=0\Leftrightarrow x=-2\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)thỏa mãn điều kiện phương trình 

Phương trình có nghiệm \(x=10;x=-2\)