Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2017 lúc 8:49

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 12:19

Đáp án D.

Ta có: 

∫ 4 8 f ' x f x 2 d x = ∫ 4 8 f x − 2 d f x = f x − 1 − 1 4 8 = − 1 f 8 + 1 f 4 = − 2 + 4 = 2.

Gọi k là 1 hằng số thực. Xét

∫ 4 8 f ' x f 2 x + k 2 d x = ∫ 4 8 f ' x 2 f x 4 d x + 2 k ∫ 4 8 f ' x f 2 x d x + k 2 ∫ 4 8 d x = 1 + 2 k . k + 4 k 2 = 2 k + 1 2 .

Chọn k = − 1 2 ,  ta có ∫ 4 8 f ' x f 2 x − 1 2 2 d x = 0 ,  mà f ' x f 2 x − 1 2 2 ≥ 0  nên  f ' x f 2 x − 1 2 2 = 0 ⇔ f ' x f 2 x = 1 2

⇒ ∫ f ' x f 2 x d x = x 2 + C ⇒ − 1 f x = x 2 + C .

 Với x =   4 , ta có

− 1 f 4 = 2 + C ⇔ − 4 = 2 + C ⇔ C = − 6.

Do đó: f x = − 1 x 2 − 6 = 2 12 − x .  Do đó  f 6 = 2 12 − 6 = 2 6 = 1 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2018 lúc 4:01

Ta có:

Chọn: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 9:45

Đáp án A.

Đặt u = f x d v = 3 x 2 d x ⇒ d u = f ' x d x v = x 3 ,  

khi đó ∫ 0 1 3 x 2 f x d x = x 3 f x 1 0 − ∫ 0 1 x 3 f ' x d x .

⇒ 1 = f 1 − ∫ 0 1 x 3 f ' x d x ⇒ ∫ 0 1 x 3 f ' x d x = − 1 ⇔ ∫ 0 1 14 x 3 f ' x d x = − 7.

Mà ∫ 0 1 49 x 6 d x = 7  

s u y   r a   ∫ 0 1 f ' x 2 d x + ∫ 0 1 7 ∫ 0 1 x 3 f ' x d x + ∫ 0 1 49 x 6 d x = 0 ⇔ ∫ 0 1 f ' x + 7 x 3 2 d x = 0.

Vậy 

f ' x + 7 x 3 = 0 ⇒ 0 ⇒ f x = − 7 4 x 4 + C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 8:59

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 6:12

Đặt

Xét tích phân

Khi đó ta có

∫ 0 1 f x = 3 sin π x 2 2 d x = 0 ⇔ f x - 3 sin π x 2 = 0   ⇔ f x = 3 sin π x 2

Vậy

 

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2018 lúc 13:52

Đáp án B.

Ta có ∫ 0 π 4 f ' x sin 2 x d x

Đặt u = sin 2 x d v = f ' x ⇒ d u = 2 cos 2 xdx v = f x  suy ra 

∫ 0 π 4 f ' x sin 2 x d x = sin 2 x f x π 4 0 − ∫ 0 π 4 2 cos 2 x . f x d x

⇒ − 2 ∫ 0 π 4 c o s 2 x . f x d x = − π 4 ⇒ ∫ 0 π 4 c o s 2 x . f x d x = π 8

Lại có: ∫ 0 π 4 c o s 2 2 x . f x d x = π 8 ⇒ ∫ 0 π 4 f x − c o s 2 x 2 d x = 0 ⇒ f x = c o s 2 x  

Do đó ∫ 0 π 8 f 2 x d x = ∫ 0 π 8 c o s 4 x d x = sin 4 x 4 π 8 0 = 1 4 .  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2018 lúc 17:29

Đáp án đúng : A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 12 2018 lúc 5:49

Đáp án B.

Ta có ∫ 0 1 f ' x . c o s π x d x

= ∫ 0 1 c o s π x d f x = f x . c o s π x 0 1 − ∫ 0 1 f x . c o s π x ' d x  

= − f 1 + f 0 + π ∫ 0 1 f x . sin π x d x = π 2 ⇒ ∫ 0 1 f x . sin π x d x = 1 2 .  

Xét ∫ 0 1 f x + k . sin π x 2 d x = 0

⇔ ∫ 0 1 f 2 x d x + 2 k . ∫ 0 1 f x . sin π x d x + k 2 . ∫ 0 1 sin 2 π x d x = 0  

⇔ 1 2 k 2 + 2 k . 1 2 + 1 2 = 0 ⇔ k + 1 2 = 0 ⇔ k = − 1.

Suy ra ∫ 0 1 f x − sin π x 2 d x = 0.  

Vậy f x = sin π x ⇒ ∫ 0 1 f x d x = ∫ 0 1 sin π x d x = 2 π .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2019 lúc 5:18

Xét hàm f x = 3 x 2 + 6 x 2 + 6 x + 1 3 trên - 2 ; 1

Ta có

 

Nhận thấy f ' x > 0 , ∀ x ∈ ℝ

⇒ Hàm số đồng biến trên  - 2 ; 1

Suy ra  m a x [ - 2 , 1 ] f x = f 1 = 16 3

Chọn C