Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Mỹ
Xem chi tiết
Dung Thái
Xem chi tiết
Cô Hoàng Huyền
28 tháng 2 2018 lúc 9:28

a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:

\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)

\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)

\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)

\(\Leftrightarrow2t^2+t-1=6t^2-6t\)

\(\Leftrightarrow-4t^2+7t-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)

Vậy phương trình vô nghiệm.

Quỳnh Thơ
Xem chi tiết
Huyền Nhi
15 tháng 1 2019 lúc 20:31

a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)

\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)

\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)

\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)

Hoàng Ninh
Xem chi tiết
Nguyễn Thị Ngọc Thơ
10 tháng 11 2019 lúc 18:32

a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được

b/ Đặt \(\left(x+1\right)^2=t\ge0\)

\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)

\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)

c/ ĐKXĐ: bla bla bla...

Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:

\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(3x+\frac{2}{x}-1=t\)

\(\frac{2}{t}-\frac{7}{t+6}=1\)

\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)

\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)

Bấm máy

Khách vãng lai đã xóa
Công Chúa Yêu Văn
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 7 2017 lúc 11:15

Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)

\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)

ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)

\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)

\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)

Thỏa mãn ĐK

Các trường hợp khác làm tương tự

Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
30 tháng 9 2019 lúc 7:36

\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)

\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)

\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow5x-3=-5\)

\(\Leftrightarrow x=-\frac{2}{5}\)

Chúc bạn học tốt !!!

Kuramajiva
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoàng Ninh
Xem chi tiết
lili
16 tháng 11 2019 lúc 16:21

có (x+1)^2+2

=x^2+2x+3

Đặt x^2+2x+3=a

=> x^2+2x+4=a+1

x^2+2x+7=a+4

pt <=>(a+4)/a=a+1

=> a^2+a=a+4

<=>a^2=4

<=>a=2 do x^2+2x+3>0

=> x^2+2x+3=2

<=> (x+1)^2=0

<=> x+1=0

<=> x=-1.

Khách vãng lai đã xóa