Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiên Là Tôi
Xem chi tiết
Kuro Kazuya
20 tháng 2 2017 lúc 3:05

Xét: \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét: \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

\(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\) ( đpcm )

Lightning Farron
20 tháng 2 2017 lúc 7:17

Ta có:

\(3a+bc=(a+b+c)a+bc=(a+c)(a+b)\)

\(\Rightarrow \sum \frac{a+3}{3a+bc}\)\(= \sum \frac{(a+c)+(a+b)}{(a+c)(a+b)}=2 \sum \frac{1}{a+b}\geq 2.\frac{9}{2(a+b+c)}=3\)

Nguyễn thị Ngọc Ánh
Xem chi tiết
Kudo Shinichi
2 tháng 2 2020 lúc 9:32

Xét \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)

\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)

\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{cases}}\)

\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Xét \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)

Mà \(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)

\(\Rightarrow VT\ge3\)

\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Trần Huỳnh Thanh Long
Xem chi tiết
Cô bé hạnh phúc
26 tháng 1 2018 lúc 20:04

+ thêm bớt bc,ca,ab lần lượt cho P ta được

\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si cho mẫu ta có

\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)

suy ra

\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)

tương tự với các BDT còn lại suy ra :

\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

đên đây easy chưa ? chung mẫu + lại với nhau ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si ta có

\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được

ta có   \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức

thay vào và đổi dấu ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)

có  \(ab+1\ge2\sqrt{ab}\)

\(ca+1\ge2\sqrt{ac}\)

\(bc+1\ge2\sqrt{bc}\)

\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)

ta lại có

\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra

\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)

  suy ra  

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)

ta có

\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)

\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)

\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)

\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)

bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái

\(a^3+b^3+c^3\le a+b+c\) 

bạn xem lại đi nha @@

dbrby
Xem chi tiết
Ngô Kim Tuyền
13 tháng 8 2019 lúc 11:34

Ta có: \(\frac{5a^3-b^3}{ab+3a^2}=\frac{3a^3-b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

\(=a-\frac{a^2b+b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

= \(a-\frac{b\left(a^2+b^2\right)}{a\left(b+3a\right)}+\frac{2a^3}{a\left(b+3a\right)}\) (1)

Áp dụng BĐT AM - GM ( x2 + y2 \(\ge2xy\)) ta có:

(1) \(\le a-\frac{2ab^2}{a\left(b+3a\right)}+\frac{2a^2}{b+3a}\) = \(a-\frac{2b^2}{b+3a}+\frac{2a^2}{b+3a}\) (2)

Tương tự ta cũng có:

\(\frac{5b^3-c^3}{bc+3b^2}\le b-\frac{2c^2}{c+3b}+\frac{2b^2}{c+3b}\left(3\right)\)

\(\frac{5c^3-a^2}{ca+3c^2}\)\(\le c-\frac{2a^2}{a+3c}+\frac{2c^2}{a+3c}\)(4)

Từ (2), (3), (4) \(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le a+b+c+\left(\frac{2a^2}{a+3c}-\frac{2a^2}{a+3c}\right)+\left(\frac{2b^2}{b+3c}-\frac{2b^2}{b+3c}\right)+\left(\frac{2c^2}{c+3a}-\frac{2c^2}{c+3a}\right)=a+b+c\le2018\)

Vậy \(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)

Y
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 16:16

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019 lúc 14:57

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

pro
14 tháng 5 2021 lúc 19:47

Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.

NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Thắng Nguyễn
27 tháng 10 2016 lúc 22:11

Xét Bất đẳng thức phụ:

\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Tương tự ta có:

\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)

Cộng lại theo vế ta có:

\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)

Đpcm

Nguyễn Phương Linh
20 tháng 4 2020 lúc 8:21

pịa pịa pịa 

Khách vãng lai đã xóa
Mầu Danh Minh Khoa
20 tháng 4 2020 lúc 9:05

l405ttol9to5l9g

Khách vãng lai đã xóa
Đào Thu Hoà
Xem chi tiết
kudo shinichi
17 tháng 5 2019 lúc 21:05

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Dấu " = " xảy ra <=> a=b=c=1

Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )

Dấu " = " xảy ra <=> a=b=c

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)

Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )

Cố gắng hơn nữa
Xem chi tiết
Pham Quoc Cuong
9 tháng 5 2018 lúc 13:12

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

Cố gắng hơn nữa
9 tháng 5 2018 lúc 20:18

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

Lê Hoàng Bảo Long
Xem chi tiết
Hoàng Thị Ánh Phương
17 tháng 3 2020 lúc 8:53

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

Ta có : \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\) ( tự chứng minh ạ )

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Áp dụng BĐT Cachy Schwarz ta có :

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\) \(\ge\frac{\left[\frac{\left(a+b+c\right)}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\)

\(\ge\frac{27}{36}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\) ( bạn tự giải rõ ạ )

Khách vãng lai đã xóa