Tìm giá trị lớn nhất của biểu thức
\(\sqrt{2x-15}.\sqrt{15-x}.\sqrt{15-x}\)
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A
A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)
Tiếp theo, kết hợp các thành phần tương tự:
A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3
Đơn giản hóa biểu thức:
A = -11x + 15/√x + 4
Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.
Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)
Dấu = xảy ra khi x=0
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)
b: ĐKXĐ: \(x< \dfrac{15}{2}\)
c: ĐKXĐ: \(x\le0\)
A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn biểu thức ATìm giá trị của x khi A=\(\frac{1}{2}\)Tìm giá trị lớn nhất của ATìm giá trị lớn nhất nhỏ nhất của biểu thức
\(M=x\left(15+\sqrt{17-x^2}\right)\)
1/ Tìm Max. Ta có
\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)
\(=-\left(\frac{x^2}{16}-\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)-15\left(\frac{x^2}{16}-\frac{2x}{4}+1\right)+32\)
\(=-\left(\frac{x}{4}-\sqrt{17-x^2}\right)^2-15\left(\frac{x}{4}-1\right)^2+32\le32\)
\(\Rightarrow M\le64\)
\(\Rightarrow\)GTLN là M = 64 đạt được khi x = 4
Tìm Min. Ta có
\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)
\(=\left(\frac{x^2}{16}+\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)+15\left(\frac{x}{16}+\frac{2x}{4}+1\right)-32\)
\(=\left(\frac{x}{4}+\sqrt{17-x^2}\right)^2+15\left(\frac{x}{4}+1\right)^2-32\ge-32\)
\(\Rightarrow M\ge-64\)
Vậy GTNN là M = - 64 đạt được khi x = - 4
Tìm x để biểu thức sau đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó:
\(A=\sqrt{9-x^2}+4\)
\(B=6\sqrt{x}-x-15\)
\(C=2\sqrt{x}-x\)
Giúp mk vs!!!
\(A=\sqrt{9-x^2}+4\) Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.
Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0
=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0
b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)
=> \(B=-6-\left(\sqrt{x}-3\right)^2\)
Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)
=> Bmin=-6 đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9
c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)
=> \(C=1-\left(1-\sqrt{x}\right)^2\) => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\)
=> Cmin = 1 Đạt được khi x=1
tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức sau:
a A= \(\sqrt{x-4}+\sqrt{5-x}\)
b B= \(\sqrt{3-2x}+\sqrt{3x+4}\)
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Cho biểu thức B= \(\frac{15\sqrt{x}-3}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm ĐKXĐ và rút gọn biểu thức K.
b) Tìm x khi K= - \(\frac{1}{2}\)
c) Tìm giá trị lớn nhất của K.
Bài1: Cho A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\).Tìm số nguyên x để A là số nguyên.
Bài2: Tìm Giá trị lớn nhất của biểu thức B=\(\frac{x^2+15}{x^2+3}\)
1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 (loại) |
x | 16 | 4 | 25 | 1 | 49 |
Vậy ....
2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Do x2 + 3 \(\ge\)3 \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)
=> \(1+\frac{12}{x^2+3}\le5\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy Max B = 5 khi x = 0