Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đan Xuân Nghi
Xem chi tiết
Remind
15 tháng 7 2023 lúc 16:52

A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)

Tiếp theo, kết hợp các thành phần tương tự:

A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3

Đơn giản hóa biểu thức:

A = -11x + 15/√x + 4

Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.

Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 11:42

 

Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu = xảy ra khi x=0

Trang Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 22:11

a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)

b: ĐKXĐ: \(x< \dfrac{15}{2}\)

c: ĐKXĐ: \(x\le0\)

Trang Thư Nguyễn Ngọc
Xem chi tiết
Biện Văn Hùng
Xem chi tiết
alibaba nguyễn
8 tháng 1 2017 lúc 22:44

1/ Tìm Max. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=-\left(\frac{x^2}{16}-\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)-15\left(\frac{x^2}{16}-\frac{2x}{4}+1\right)+32\)

\(=-\left(\frac{x}{4}-\sqrt{17-x^2}\right)^2-15\left(\frac{x}{4}-1\right)^2+32\le32\)

\(\Rightarrow M\le64\)

\(\Rightarrow\)GTLN là M = 64 đạt được khi x = 4

Tìm Min. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=\left(\frac{x^2}{16}+\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)+15\left(\frac{x}{16}+\frac{2x}{4}+1\right)-32\)

\(=\left(\frac{x}{4}+\sqrt{17-x^2}\right)^2+15\left(\frac{x}{4}+1\right)^2-32\ge-32\)

\(\Rightarrow M\ge-64\)

Vậy GTNN là M = - 64 đạt được khi x = - 4

Mạnh Châu
8 tháng 1 2017 lúc 20:41

x = 8 đó mình chỉ đoán thôi 

Do Ngoc Anh
8 tháng 1 2017 lúc 21:02

GTNN = 64 khi x = 4

Trần Hoàng Uyên Nhi
Xem chi tiết
Bùi Thế Hào
15 tháng 8 2017 lúc 12:09

\(A=\sqrt{9-x^2}+4\)  Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.

Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0

=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0

b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)

=> \(B=-6-\left(\sqrt{x}-3\right)^2\)

Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)

=> Bmin=-6  đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9

Bùi Thế Hào
15 tháng 8 2017 lúc 12:12

c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)

=> \(C=1-\left(1-\sqrt{x}\right)^2\)  => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\) 

=> Cmin = 1 Đạt được khi x=1

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Edogawa Conan
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Nguyễn Thanh Thảo
Xem chi tiết
Lê Minh Sơn
Xem chi tiết
Edogawa Conan
17 tháng 1 2020 lúc 20:54

1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng:

\(\sqrt{x}-3\)   1  -1  2   -2   4   -4
\(\sqrt{x}\)  4  2  5  1  7 -1 (loại)
x 16 4 25 1 49 

Vậy ....

Khách vãng lai đã xóa
Edogawa Conan
17 tháng 1 2020 lúc 20:56

2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Do x2 + 3 \(\ge\)3  \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)

=> \(1+\frac{12}{x^2+3}\le5\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Max B = 5 khi x = 0

Khách vãng lai đã xóa