Tìm tất cả các giá trị của m để biểu thức \(P-\sqrt{\left(m+2\right)x+12-3m^2}\) có nghĩa với mọi x
a) Tam thức \(f\left(x\right)=x^2+2\left(m-1\right)+m^2-3m+4\) không âm với mọi giá trị x
b) Có bao nhiêu giá trị nguyên của tham số m để mọi x thuộc R biểu thức \(f\left(x\right)=x^2+\left(m+2\right)x+8m+1\) luôn nhận giá trị dương
c) Tìm tất cả các giá trị m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\forall x\in R\)
a) Tìm tất cả các giá trị của tham số m để \(g\left(x\right)=4mx^2-4\left(m-1\right)x+m-3\) luôn luôn âm với mọi x thuộc R
b) Tìm tất cả các giá trị của tham số m để \(f\left(x\right)=x^2-2\left(m+2\right)x-2m^2+3m+4\) không âm với mọi m thuộc R
c) Bất pt \(x^2+2mx+m^2-5m+6>0\) ( m là tham số thực) có nghiệm với mọi x thuộc R khi \(m\in\left(-\infty;\dfrac{a}{b}\right)\) với \(a,b\in Z\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức a+2b
Cho biểu thức \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\right)\) với \(\left(x>0;x\ne1\right)\)
a. Rút gọn biểu thức M
b. tìm tất cả các giá trị của x để biểu thức M nhận giá trị nguyên
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\)
\(\Leftrightarrow M=\frac{1}{1-\sqrt{x}}-\frac{\sqrt{x}+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
\(\Leftrightarrow M=\frac{1+\sqrt{x}-\sqrt{x}-2}{1-x}\)
\(\Leftrightarrow M=\frac{-1}{1-x}\)
\(\Leftrightarrow M=\frac{1}{x-1}\)
b) Để M nhận giá trị nguyên
\(\Leftrightarrow\frac{1}{x-1}\inℤ\)
\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{0;2\right\}\)
Mà \(x>0\)
Vậy để M nguyên \(\Leftrightarrow x=2\)
Cho biểu thức M=\(\left(2+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-2\sqrt{x}-x+\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}\right)\)
a) Tìm điều kiện của x để biểu thức M có nghĩa. Rút gọn biểu thức M.
b) Tìm giá trị của x để biểu thức P = M nhận giá trị là số nguyên
a: ĐKXĐ: x=0; x<>1
\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
b: Sửa đề: P=1/M
P=1/4-x=-1/x-4
Để P nguyên thì x-4 thuộc {1;-1}
=>x thuộc {5;3}
Tìm tất cả các giá trị của tham số m để bất pt
a) \(m^2x-1< mx+m\) có nghiệm
b) \(\left(m^2+9\right)x+3\ge m\left(1-6x\right)\) có nghiệm đúng với mọi x
c) \(4m^2\left(2x-1\right)\ge\left(4m^2+5m+9\right)x-12\) có nghiệm đúng với mọi x
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
Cho biểu thức: M = 1 - \(\left[\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right].\left[\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
a. Tìm giá trị của x để M có nghĩa, rút gọn M
b. Tìm giá trị nhỏ nhất của biểu thức \(\left(2000-M\right)\)khi x\(\ge4\)
Tìm các số nguyên z để giá trị của \(M\in N\)
tìm tất cả các giá trị của tham số m để bpt \(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m\) có nghiệm đúng với mọi x thuộc R
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
Cho biểu thức \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Chứng tỏ rằng với mọi x, biểu thức C luôn có giá trị là 1 số dương.
v, Tìm tất cả các số nguyên x để C có giá trị là 1 số nguyên
c, Với giá trị nào của x thì biểu thức C có giá trị nhỏ nhất. Tìm giá trị nhỏ đó
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
cho biểu thức M= \(\left(\frac{3}{\sqrt{x}-7}-\frac{1}{\sqrt{x}+7}\right)\div\frac{2\sqrt{x}+6}{x-49}\)
a. Tìm ĐKXĐ và rút gọn M.
b. Tìm tất cả các giá trị của x để M nhận giá trị nguyên.
a. ĐK: \(x\ge0,x\ne49\)
\(M=\frac{3\left(\sqrt{x}+7\right)-\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}+6}{x-49}\)
\(=\frac{2\sqrt{x}+28}{x-49}.\frac{x-49}{2\sqrt{x}+6}=\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\)
b. M nguyên \(\Leftrightarrow\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\in Z\Rightarrow\frac{2\sqrt{x}+6+22}{2\sqrt{x}+6}\in Z\Rightarrow1+\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\left(2\sqrt{x}+6\right)\inƯ\left(22\right)\)
Đến đây đã rất dễ dàng rồi nhé ^^
đề không cho tìm x NGUYÊN để m nguyên mà chỉ tìm các điểm x để m nguyên thôi
Hồ Thị Hải Yến: Đúng rồi em, ta chỉ cần tìm x để Z nguyên thôi, x không cần nguyên. Chú ý một điều là \(2\sqrt{x}+6\ge6\) nên e chỉ cần chú ý các ước lớn hơn 6 của 22 thôi nhé :)