Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thanh Ngọc
Xem chi tiết
Thu Hien Tran
Xem chi tiết
Cường Quốc Ngô
Xem chi tiết
Bích Ngọc
4 tháng 3 2018 lúc 10:39

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Phạm Băng Băng
Xem chi tiết
Trần Thùy Dung
Xem chi tiết
v
16 tháng 12 2018 lúc 22:17

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Anna Taylor
16 tháng 12 2018 lúc 22:18

J VẠI MÁ V

Trần Thùy Dung
16 tháng 12 2018 lúc 22:18

sorry t lưu tạm

Despacito
Xem chi tiết
Nandemonaiya
31 tháng 10 2017 lúc 13:41

\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-x}-\frac{\sqrt{x}-4}{1-x}\right)\)

\(A=\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}-x-\sqrt{x}+4}{1-x}\right)\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{4-x}{1-x}\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{1-x}{4-x}\)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

Hi nguyễn
Xem chi tiết
Vũ Trọng Nghĩa
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

your heart your love is...
Xem chi tiết
Ngô Thị Nhật Hiền
Xem chi tiết
hanvu
Xem chi tiết
Trần Phúc Khang
13 tháng 7 2019 lúc 15:35

A

Áp dụng BĐT cosi ta có 

\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)

\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)

Khi đó 

\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)

MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)

Trần Phúc Khang
13 tháng 7 2019 lúc 15:42

B

Áp dụng BĐT cosi ta có :

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)

Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)

=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)

\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z