cho số tự nhiên A= 155a51b4c216 có 12 chữ số
Chứng minh rằng nếu thay a,b,c bằng các chữ số khác nhau trng ba số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 72
Cho số 155*710*4*16 có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396
cho số 155*710*4*16 có 12 chữ số.chứng minh rằng nếu thay các dấu sao* bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396
Ta có :
396=4.9.11396=4.9.11
-) Nhận xét :
+)A có 2 chữ số tận cùng là 16
⇒⇒ A chia hết cho 4 (1)
+) Tổng các chữ số của A = 1 + 5 + 5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * =36
⇒⇒ A chia hết cho 9 (2)
+) Tổng các chữ số hàng lẻ của A = 1 + 5 + 7 + 0 + 4 + 1 = 18
+) Tổng các chữ số hàng chẵn của A = 5 + * + 1 + * + * + 6 = 12 + * + * + * =12+6 =18
⇒⇒ Tổng các chữ số hàng lẻ trừ đi tổng các chữ số hàng chẵn = 18 - 18 = 0
⇒⇒ A chia hết cho 11 (3)
Từ (1) + (2) + (3) ⇒⇒ A⋮4;9;11A⋮4;9;11
⇒A⋮BCNN(4;9;11)=396⇒A⋮BCNN(4;9;11)=396 vs các chữ số tùy ý 1,2,3
⇒đpcm
Cho N=155*710*4*16 là số tự nhiên có 12 chữ số .Chứng tỏ rằng nếu thay các dấu*bởi các chữ số khác nhau trong3 chữ số 1,2,3 một cách tùy ý thì N luôn chia hết cho 396
SOS!!!Cấp cứu!!!
396 = 4.9.11
+) Số đã cho có 2 chữ số tận cùng là 16 chia hết cho 4 nên số dã cho chia hết cho 4
+) Tổng các chữ số của số đã cho = 1+5+5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * = 30 + 6 = 36 (Vì * + * + * luôn = 6)
36 chia hết cho 9 nên Số đó cũng chia hết cho 9
+) Xét tổng các chữ số ở hàng lẻ tính từ chữ số đầu tiên của số đã cho = 1 + 5 + 7 + 0 + 4 + 1 = 18
Tổng các chữ số ở hàng chẵn = 5 + * + 1 + * + * + 6 = 12 + 6 = 18
=> Tổng các chữ số ở hàng chẵn - Tổng các chữ số ở hàng lẻ = 18 - 18 = 0 chia hết cho 11
=> số đã cho chia hết cho 11
Vậy số đã cho chia hết cho 4;9;11 => số đó chia hết cho 396
396 = 4.9.11
Nhận xét: A có 2 chữ số tận cùng là 16 chia hết cho 4 =>A chia hết cho 4
+) Tổng các chữ số của A bằng1+5+5+*+7+1+0 +* + 4 +* + 1 + 6 = 30 +*+*+* = 30+ 6=36 chia hết cho 9
=> A chia hết cho 9
+) Tổng các chữ số hàng lẻ của A bằng 1 + 5 + 7 +0 + 4 + 1 = 18
Tổng các chữ số hàng chẵn của A bằng 5 + * + 1 + *+ * + 6 = 12 + * + * + * = 12 + 6 =18
=>Tổng các chữ số hàng chẵn của A - Tổng các chữ số hàng lẻ của A = 18 - 18 =0 chia hết cho 11
=>A chia hết cho 11
Vậy A chia hết cho cả 4;9;11 =>A chia hết cho BCNN (4;9;11)= 396 với * thay bởi các chữ số tuỳ y 1;2;3
< bài đau đầu quá (*-*)>
Cho số 155*710*4*16, có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi cá chữ số khác nhau trong 3 chữ số:1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396
cho số 155*710*4*16 có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396
Cho số 155*710*4*16 có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tùy thì số đó luôn chia hết cho 396.
Giúp mk với!
Ta có :
396=4.9.11396=4.9.11
-) Nhận xét :
+)A có 2 chữ số tận cùng là 16
⇒⇒ A chia hết cho 4 (1)
+) Tổng các chữ số của A = 1 + 5 + 5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * =36
⇒⇒ A chia hết cho 9 (2)
+) Tổng các chữ số hàng lẻ của A = 1 + 5 + 7 + 0 + 4 + 1 = 18
+) Tổng các chữ số hàng chẵn của A = 5 + * + 1 + * + * + 6 = 12 + * + * + * =12+6 =18
⇒⇒ Tổng các chữ số hàng lẻ trừ đi tổng các chữ số hàng chẵn = 18 - 18 = 0
⇒⇒ A chia hết cho 11 (3)
Từ (1) + (2) + (3) ⇒⇒ A⋮4;9;11A⋮4;9;11
⇒A⋮BCNN(4;9;11)=396⇒A⋮BCNN(4;9;11)=396 vs các chữ số tùy ý 1,2,3
⇒đpcm
Cho số tự nhiên A có 12 chữ số và A = 155a710b4c16. Chứng minh rằng nếu thay đổi các chữ số a, b, c khác nhau trong 3 chữ số 1, 2, 3 một cách tùy ý thì A luôn chia hết cho 396.
Cho số 155*710*4*16 có 12 chữ số.Chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396.
. Cho số 155*710*4*16 có 12 chữ số. Chứng minh rằng nếu thay các dấu * bởi một trong ba chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396
396 = 4.9.11
Nhận xét: A có 2 chữ số tận cùng là 16 chia hết cho 4 =>A chia hết cho 4
+) Tổng các chữ số của A bằng1+5+5+*+7+1+0 +* + 4 +* + 1 + 6 = 30 +*+*+* = 30+ 6=36 chia hết cho 9 => A chia hết cho 9
+) Tổng các chữ số hàng lẻ của A bằng 1 + 5 + 7 +0 + 4 + 1 = 18
Tổng các chữ số hàng chẵn của A bằng 5 + * + 1 + *+ * + 6 = 12 + * + * + * = 12 + 6 =18
=>Tổng các chữ số hàng chẵn của A - Tổng các chữ số hàng lẻ của A = 18 - 18 =0 chia hết cho 11
=>A chia hết cho 11
Vậy A chia hết cho cả 4;9;11 =>A chia hết cho BCNN (4;9;11)= 396 với * thay bởi các chữ số tuỳ y 1;2;3