Giải bpt
\(\frac{9}{\left|x-5\right|-3}\ge\left|x-2\right|\)
1.giải các bpt sau
a.\(\left(x-3\right)\left(x+3\right)\ge x^2-7x+1\)
b.\(\dfrac{1,5-x}{5}\ge\dfrac{4x+5}{2}\)
2.giải các pt sau
\(x^3+1=x.\left(x+1\right)\)
bài 2: giải các bpt sau:
1) (x-2)(\(9-x^2\))≤0
2) (\(x^2-x-6\))(\(x^2-3x+2\))≥0
3) \(\frac{\left(x-2\right)\left(9-x\right)}{x-1}\)≤0
4) \(\frac{x\left(x^2-3x+2\right)}{x+4}\)≥0
5) \(\frac{\left(x+2\right)}{\left(x+1\right)\left(x-2\right)}\)<0
6) \(\frac{\left(x-2\right)\left(9-x^2\right)}{x-1}\)≥0
7) \(\frac{x^2\left(x-3\right)}{3x^2+x-4}\)≥0
8) \(\frac{x^2-3x+2}{9-x}\)≥0
9) \(\frac{x^2+1}{x^2+3x-10}\)≤0
10) \(\frac{x^2-9x+14}{x^2+9x+14}\)≥0
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải bpt sau:
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x-3\right)^5\left(x+6\right)}{x^2\left(x-7\right)^3}\le0\)
Giải BPT
\(\left(x+2\right)^3\ge\left(x-1\right)^2+4\)
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
2.
Xét với \(x\ge1\)
\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)
\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)
Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow m+3t^2-2t=0\)
\(\Leftrightarrow3t^2-2t=-m\)
Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)
\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)
\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)
\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)
Giải bpt
\(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)
Giải bpt
\(\left(x-2\right)^2\ge\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)\)
giải các bất phương trình sau:
1) (x-2)(9-x2)≤0
2) (x2-x-6)(x2-3x+2)≥0
3) \(\frac{\left(x-2\right)\left(9-x\right)}{x-1}\)≤0
4) \(\frac{x\left(x^2-3x+2\right)}{x+4}\)≥0
5) \(\frac{\left(x+2\right)}{\left(x+1\right)\left(x-2\right)}\)<0
6) \(\frac{\left(x-2\right)\left(9-x^2\right)}{x-1}\)≥0
7) \(\frac{x^2\left(x-3\right)}{3x^2+x-4}\)≥0
8) \(\frac{x^2-3x+2}{9-x}\)≥0
9) \(\frac{x^2+1}{x^2+3x-10}\)≤0
10) \(\frac{x^2-9x+14}{x^2+9x+14}\)≥0