Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm M. Tìm giá trị nhỏ nhất của sin AMB
Cho tam giác ABC vuông tại A, AB = 3, AC = 4. Trên cạnh AC lấy điểm M. Tìm giá trị nhỏ nhất của sin AMB
Cho tam giác ABC vuông góc tại AB nhỏ hơn AC trên cạnh ac lấy điểm D sao cho AD = AB gọi M là trung điểm của BC , tia AM cắt BC tại K a) chứng minh tam giác AMB = tam giác AMD b) chúng minh BK = DK c) trên tia đối của tia BA lấy điểm E sao cho BE =CD . chứng minh 3 diểm D,K,E thẳng hàng
Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M. Tìm giá trị nhỏ nhất của MA2 + MB2 + MC2
Cho tam giác ABC vuông cân tại A . Trên cạnh BC lấy điểm M . Tìm giá trị nhỏ nhất của MA^2 + MB^2 + MC^2 ( Nhờ các bạn vẽ hình cho mình nha )
Do MA và MC không đổi =>Để AM^2+BM^2+CM^2 nhỏ nhất =>AM là đường cao của tam giác ABC (1)
Mà ABC vuông cân =>M là trung điểm của BC
Kẻ MI vuông góc với AB,MK vuông góc với AC
suy ra MI // Ak,AI // MK suy ra AIMK là hình chữ nhật
Ta có :AM^2+BM^2+CM^
=AI^2+IM^2+IM^2+IB^2+CK^2+MK^2
=2AI^2+2IM^2+AM^2
=2*(AI^2+IM^2)+AM^2
=3AM^2
Từ (1) => AM^2+BM^2+c
Từ 1 => AM^2+BM^2+CM^2 bé nhất bằng 3AM^2
Bài 3 : Cho tam giác ABC vuông tại A có AB = AC = a . Điểm M chuyển động trên
cạnh BC , gọi D và E thứ tự là hình chiếu của M trên AB và AC .
a)Tìm vị trí của M để S ADME đạt giá trị lớn nhất tính giá trị lớn nhất đó theo a .
b) Tìm vị trí của M để DE đạt giá trị nhỏ nhất tính giá trị nhỏ nhất đó theo a .
cho tam giác ABC vuông tại A . Gọi M là trung điểm của AC . Trên tia đói của tia AC lấy điểm K sao cho BM=MK a. c/m tam giá AMB = tam giác CMK b. CK vuông AC c. AK song song BC
c: Xét tứ giác ABCK có
M là trung điểm của AC
M là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: AK//BC
Cho tam giác ABC vuông tại A, BC=a\(\sqrt{2}\)Trên các cạnh BC, AB và AC lần lượt lấy các điểm M, D, E tùy ý. Tìm giá trị nhỏ nhất MD+ME. Giúp mk với nka các bn !!!
Câu 4. Cho hình vuông ABCD có cạnh bằng 4. Gọi P là trung điểm của AD, Q là điểm trên cạnh AB sao cho AQ = 2√3. Cho điểm M di động trên đoạn thẳng PQ. Tìm giá trị nhỏ nhất của tổng MC + MD.
Câu 5. Cho tam giác ABC, đường cao AH, có AB = 6, AC = 8. Góc xHy = 90 độ. Di động sao cho Hx cắt AB tại M và Hy cắt AC tại N. Tìm giá trị nhỏ nhất của độ dài MN và diện tích tam giác HMN
cho tam giác ABC vuông tại A (AB<AC).Trên cạnh AC lấy điểm D sao cho AD=AB;Gọi M là trung điểm của BD,Tia AM cắt BC tại K.
a,Chứng Minh: tam giác AMB = tam giác AMD
b,Chứng Minh:BK=DK
c,Trên tia đối của tia BA lấy điểm E sao cho BE=CD.Chứng minh 3 điểm D,K,E thẳng hàng
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)