Tìm x thuộc Z để biểu thức P có giá trị nguyên : P = \(\frac{7}{\sqrt{x}-1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x thuộc Z để biểu thức A= \(\frac{\left(x+1\right)\sqrt{x+1}}{x-\sqrt{x}}\)có giá trị nguyên
tìm x thuộc Z để biểu thức P=\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) có giá trị nguyên
\(P=\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
=> \(\sqrt{x}-2\inƯ\left(7\right)\)= {- 7; - 1 ; 1 ; 7 }
\(\Rightarrow\sqrt{x}=\) { - 5; 1; 3 ; 9 }
\(\Rightarrow x=\) { 1 ; 3 }
Cho biểu thức \(M=\frac{\sqrt{x}-1}{2}\) . TÌm x thuộc Z và x<50 để M có giá trị nguyên
Tìm x thuộc Z để biểu thức có giá trị nguyên: A=\(\dfrac{2\sqrt{x}+3}{3\sqrt{x}-1}\)
Để A nguyên thì \(2\sqrt{x}+3⋮3\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+9⋮3\sqrt{x}-1\)
\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;11\right\}\)
\(\Leftrightarrow3\sqrt{x}\in\left\{0;12\right\}\)
hay \(x\in\left\{0;16\right\}\)
Tìm x thuộc Z để biểu thức sau có giá trị nguyên :
a, A = \(\frac{2\sqrt{x}+10}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+8}{2\sqrt{x}+1}\)
a) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)
Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)
Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)
\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)
b) đk: \(x\ge0\)
Ta có:
+ Nếu: x không là số chính phương => A vô tỉ (loại)
+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên
Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)
Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)
Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)
=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)
A=\(\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)
a)Rút gọn A
b) Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
\(a,A=\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(A=\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
để A nguyên \(5⋮\sqrt{x}-3\)
lập bảng ra đc
\(x=\left\{2\right\}\)
tìm x thuộc Z để biểu thức A có giá trị nguyên: \(A=\frac{5}{\sqrt{x-3}}\)
để A có giá trị nguyên thì \(\sqrt{x-3}\) phải là ước của 5, ta có:
\(\sqrt{x-3}=1\Rightarrow x=4\) (nhận)
\(\sqrt{x-3}=-1\Rightarrow\) (loại)
\(\sqrt{x-3}=5\Rightarrow x=28\) (nhận)
\(\sqrt{x-3}=-5\Rightarrow\) (loại)
vậy ta có x = 4 và x = 28 thỏa mãn
Cho biểu thức :
A= \(\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
2,2. Cho biểu thức A = \(\frac{x+8\sqrt{x}+15}{x+\sqrt{x}-6}\)
Tìm x thuộc Z để biểu thức A nhận giá trị nguyên