Cho tam giác ABC vuông tại A B=60 độ và BC=8.Tính độ dài cạnh AB AC
BÀI 1 cho tam giác ABC vuông tại A, biết AB=a và góc B=60 độ. tính độ dài của các vecto AB+AC và AB-AC
BÀI 2 cho hình vuông ABCD cạnh a . tính độ dài của các vecto
a) AC-AB
b) AB+AD
c) AB+BC
Cho ABC vuông tại A. Có góc B = 60 độ và AB = 3cm,
AC = 4cm. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC (E thuộc BC).
Tính độ dài cạnh BC
Chứng minh: tam giác ABD = EBD
Kéo dài DE cắt AB tại H. Chứng minh là tam giác đều
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
Cho tam giác ABC vuông tại A, có góc B = 60 độ và AB = 5cm . Tia phân giác góc B cắt AC tại D . kẻ DE vuông góc với BC tại E
a) Chứng Minh : tam giác ABD = tam giác EBD
b)Chứng minh : tam giác ABE là tam giác đều
c)Tính độ dài cạnh BC
d) Tính độ dài cạnh DE
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
cho tam giác ABC vuông tại A, có góc B=60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) chứng minh: tam giác ABD=EBD
b) chứng minh: tam giác ABE là tam giác đều
c) Tính độ dài cạnh BC
Cho ABC vuông tại A. Có góc B = 60 độ và AB = 3cm,
AC = 4cm. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC (E thuộc BC).
Tính độ dài cạnh BC
Chứng minh:
Kéo dài DE cắt AB tại H. Chứng minh là tam giác đều
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm
A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm
Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm B. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm
Bài 4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 15 cm; 8 cm; 18 cm
B. 21 cm; 20 cm; 29 cm
C. 5 cm; 6 cm; 8 cm
D. 2 cm; 3 cm; 4 cm
Bài 5: Cho tam giác ABC vuông tại A. Kẻ AD ⊥ BC tại D. Biết AB = 7 cm, BD = 4 cm. Khi đó AD có độ dài là:
A. AD = 33 cm
B. AD = 3 cm
C. AD = √33 cm
D. AD = √3 cm
Bài 2: D
Bài 3: B
Bài 4: B
bài 5: C
Cho tam giác ABC vuông tại A có AB trên AC = 3 phần 4
và BC =100cm.
a) Tính độ dài AB AC , .
b) Tính độ dài hình chiếu của các cạnh góc vuông tam giác ABC trên cạnh BC
a) Cho tam giác ABC vuông tại A có BC=15cm, AB:AC=3:4. Tính độ dài cạnh AB, AC
b) Cho tam giác ABC vuông tại A có AB=24cm, AC:BC=5:13. Tính độ dài cạnh AC,BC
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
Cho tam giác ABC vuông tại A, có AB=18cm, AC=24cm
1.Tính độ dài cạnh BC
2.Gọi I là trung điểm của BC. Đường vuông góc với cạnh BC tại I cắt AC tại E. Chứng minh rằng
a) Hai tam giác ABC và IEC đồng dạng
b) Tính độ dài các cạnh của tam giác IEC
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm