chứng minh rằng 1^4^k +2^4^k+3^4^k+4^4^k không chia hết cho 5
chứng minh rằng 1^4^k +2^4^k+3^4^k+4^4^k không chia hết cho 5
Cho k là một số tự nhiên lẻ. Chứng minh rằng ( 1kk+ 2k + 3k+....+ n^k) chia hết cho 1+2+3+4+...+n
chứng minh rằng số nguyên k lớn hơn 1 thỏa mãn k^2+4 và k^2+16 là số nguyên tố thì k chia hết cho 5
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4. + Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * . Nên n2+4 không là số nguyên tố + Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * . Nên n2+16 không là số nguyên tố. Vậy n2 ⋮ 5 hay n ⋮ 5
Cho A=4+4^2+4^3+...+4^24
chứng minh rằng A chia hết cho 420
ai nhạn mk k ,k đg gấp
Có : A = (4+4^2)+(4^2+4^3)+.....+(4^23+4^24)
= 20+4.(4+4^2)+.....+4^22.(4+4^2)
= 20+4.20+......+4^22.20
= 20.(1+4+.....+4^22) chia hết cho 20 (1)
Lại có : A = (4+4^2)+(4^3+4^4)+.....+(4^23+4^24)
= 4.(1+4)+4^3.(1+4)+......+4^23.(1+4)
= 4.5+4^3.5+....+4^23.5
= 5.(4+4^3+.....+4^23) chia hết cho 5 (2)
A = (4+4^2+4^3)+(4^4+4^5+4^6)+......+(4^22+4^23+4^24)
= 4.(1+4+4^2)+4^4.(1+4+4^2)+......+4^22.(1+4+4^2)
= 4.21+4^4.21+.....+4^22.21
= 21.(4+4^4+.....+4^22) chia hết cho 21 (3)
Từ (1) ; (2) và (3) => A chia hết cho 4.5.21 = 420 ( vi 4 ; 5 ; 21 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
Bài 4 :
1) Chứng minh hiệu sau không chia hết cho 2
( 10^k + 8^k + 6^k ) - ( 9^k + 7^k + 5^k ) , K thuộc N sao
2) Chứng minh tổng sau chia hết cho 2
2001^n + 2002^n + 2003^n ( n thuộc N sao )
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
Chứng minh rằng nếu số nguyên k lớn hơn 1 thỏa mãn k^2+4 va k^2+16 là các số nguyên thì k chia hết cho 5
Cho S = 1*2*3 + 2*3*4 + 3*4*5 + ...+k(k+1)(k+2)
chứng minh rằng 4S+1 là số chính phương
Bài tập:
Bài 1: Chứng minh: Với k thuộc N*, ta luôn có: k (k+1) (k+2) - (k-1) k (k+1) = 3.k (k+1)
Áp dụng tính tổng: S = 1.2 + 2.3 + 3.4 + ... + n.(n+1)
Bài 2: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.
Bài 3: Một số chia cho 4 dư 3, chia 17 dư 9, chia 19 dư 13. Hỏi số đó chia cho 1292 dư bao nhiêu?
Bài 4: Tìm một số nhỏ nhất, biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5 dư 4 và cho 10 dư 9.
Bài 5: Số học sinh của một trường Trung học Cơ Sở là số tự nhiên nhỏ nhất có 4 chữ số mà khi chia số đó cho 5 hoặc 6, hoặc cho 7 thì đều dư 1. Hãy tìm số học sinh của trường Trung học Cơ Sở đó.
*Giúp mình với, chiều mình phải nộp bài rồi!!!*
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37