chứng minh rằng 1^4^k +2^4^k+3^4^k+4^4^k không chia hết cho 5
chứng minh rằng số nguyên k lớn hơn 1 thỏa mãn k^2+4 và k^2+16 là số nguyên tố thì k chia hết cho 5
Chứng minh rằng nếu số nguyên k lớn hơn 1 thỏa mãn k^2+4 va k^2+16 là các số nguyên thì k chia hết cho 5
Chứng minh rằng nếu số nguyên \(k>1\)thỏa mãn \(k^2+4\)và \(k^2+16\)là các số nguyên tố thì k chia hết cho 5
cần gấp ạ
camon mn
Cho S= 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương.
Cho e hỏi là vì sao khi :
S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4
=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)
Tới đoạn này thì S lại bằng:
=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
Và sau đó chỉ còn: =(k-1)k(k+1)(k+2)
MONG CÁC BẠN, CÁC THẦY CÔ GIẢI ĐÁP GIÚP MÌNH!!!
với k\(\inℤ\) chứng minh rằng \(k^2\)+3k+5\(⋮\)11 \(\Leftrightarrow\) k+4\(⋮\)11
1. Trong mặt phẳng tọa độ xOy cho đường thẳng (d): y=ã+b. Tìm a và b biết (d) tiếp xức với parabol (P): y=x\(^2\)tại điểm A(-1; 1)
2. Chứng minh rằng nếu số nguyên K lớn hơn 1 thỏa mãn k\(^2\)+4 và k\(^2\)+16 là các số nguyên tố thì chia hết cho 5
Cho tam giác ABC vuông tại A(AB<AC), đường cao AH.
a) Trên cạnh AC lấy điểm K(K ≠A, K≠C), gọi D là hình chiếu của A trên BK. Chứng minh rằng BD \(\times\) BK=BH\(\times\)BC
b)Biết BC= 4\(\times\)BH . Chứng minh rằng:\(s_{BHD}\)=\(\dfrac{1}{4}\)\(S_{BKC}\)\(\cos^2ABD\)
Cho số nguyên dương n > 1, k mà k chia hết cho n − 1. Chứng minh rằng nknk −1 chia hết cho (n−1)2