Cho ABC có Bˆ Cˆ .Gọi AH là đường vuông góc kẻ từ A đến BC
( H thuộc BC) và M là một điểm thuộc đoạn AH.
a)So sánh độ dài BH và CH
b) So sánh độ dài MB và MC
Tam giác ABC có góc B>góc C, gọi AH là đường vuông góc kẻ từ điểm A đến BC (H thuộc BC), M là điểm thuộc đoạn AH
a) So sánh: BH và CH
b) So sánh: MB và MC
c) Chứng minh rằng: AH< AB+AC:2
hung huyen ngu vai
Cho tam giác ABC có góc B>C . Gọi AH là đường vuông góc kẻ từ A đến đường thẳng BC . Gọi M là trung điểm thuộc đoạn thẳng AH . So sánh MB và MC
Cho tam giác ABC có góc B lớn hơn góc C. AH là đường vuông góc kẻ từ A đến đường thẳng BC. M là 1 điểm thuộc đoạn thẳng AH. So sánh MB và MC
cho tam giác ABC có AC > AB kẻ đường vuông góc AH từ A đến đường thẳng BC gọi D là điểm nằm giữa A và H a) so sánh độ dài các đoạn thẳng HC và HB b) so sánh các độ dài các đoạn thẳng DC và DB
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
ΔABC có ∠B và ∠C nhọn. Gọi D là điểm bất kì thuộc cạnh BC, gọi H và K là chân các đường vuông góc kẻ từ B và C đến đường thẳng AD.
a, So sánh độ dài BH và BD; có khi nào BH=BD không?
b, So sánh tổng BH+CK với BC?
a: ΔBHD vuông tại H
=>BH<BD
BH=BD khi H trùng với D
=>AD vuông góc BC
b: ΔCKD vuông tại K
=>CK<CD
mà BH<BD
nên BH+CK<BC
Cho tam giác ABC có B^ và C^ là các góc nhọn. Gọi D là điểm bất kì thuộc cạnh BC, gọi H và K là chân các đường vuông góc kẻ từ B và C đến đường thẳng AD.
a) So sánh các độ dài BH và BD. Có khi nào BH=BD.
b) So sánh tổng BH+CK với BC.
a, \(BH\le BD\)đường vuông góc ngắn hơn mọi đường xuyên
BH = BD khi và chỉ khi \(H\equiv D\), tức là \(AD\perp BC\)
b, Ta có : \(BH\le BD\)và \(CK< CD\)nên \(BH+CK\le BD+CD=BC\)
Xảy ra \(BH+CK=BC\)khi và chỉ khi \(AD\perp BC\).
cho tam giác abc có góc a tù ab<ac kẻ ah vg góc vs bc tại h
a so sánh bh và ch
b gọi m là 1 điểm nằm giữa a và h so sánh mb vàmc
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC
Cho hình bình hành ABCD có điểm E thuộc cạnh BC , điểm G thuộc cạnh AB và AE = CG . Gọi H là chân đường vuông góc kẻ từ D đến AE , K là chân đường vuông góc kẻ từ D đến CG . So sánh độ dài DH và DK
Cho tam giác ABC có AC>AB, góc ABC > góc ACB. Vẽ AH vuông góc BC ( H thuộc BC). Cho HC>HB.
a. Lấy điểm E trên đoạn thẳng AH. So sánh độ dài đoạn BE và BA
b. So sánh độ dài đoạn CE bà CA
c. So sánh độ dài đoạn EB và EC
a: Ta có: ΔBEH vuông tại H
nên \(\widehat{BEH}< 90^0\)
=>\(\widehat{BEA}>90^0\)
=>BA>BE
b: Ta có: ΔEHC vuông tại H
nên \(\widehat{HEC}< 90^0\)
=>\(\widehat{AEC}>90^0\)
hay CA>CE
c: Xét ΔEBC có HB<HC
mà HB là hình chiếu của EB trên BC
và HC là hình chiếu của EC trên BC
nên EB<EC