Giải hệ pt
x2+xy +y2=19
x- xy +y = -1
giải hệ pt
x2+x3y-xy2+xy-y=1
và x4+y2-xy(2x-1)=1
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Giải hệ pt x2+xy +y =19
x-xy+y=-1
\(\left\{{}\begin{matrix}x^2+xy+y=19\left(1\right)\\x-xy+y=-1\left(2\right)\end{matrix}\right.\)
Từ (2) <=> xy=x+y+1 thế vào (1) ta được
\(\left(x^2+y^2+2xy\right)-xy=19\) <=> \(\left(x+y\right)^2-\left(x+y\right)-20=0\) Đặt x+y=t ta đc
\(t^2-t-20=0\)\(\) <=> \(\left[{}\begin{matrix}t+4=0\\t-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-4\\t=5\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+y=-4\\x+y=5\end{matrix}\right.\) thế vào (2) ta đc
\(\left[{}\begin{matrix}x+y=-4\\xy=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\pm\sqrt{7}\\x=-2\mp\sqrt{7}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+y=5\\x-y=6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Giải hệ pt x2+y2=5xy/2 và x2+xy=5-y
Số nghiệm của hệ phương trình x 2 + x y + y 2 = 4 x + y + x y = 2 là
A. 1
B. 2
C. 3
D. 4
Ta có: x 2 + x y + y 2 = 4 x + y + x y = 2 ⇔ x + y 2 - x y = 4 x + y + x y = 2
Đặt S= x+ y; P = xy. Khi đó hệ phương trình trên trở thành: S 2 - P = 4 ( 1 ) S + P = 2 ( 2 )
Từ (2) suy ra: P= 2- S thay (1): S2 - (2 – S) = 4
⇔ S 2 + S - 6 = 0 ⇔ [ S = - 3 S = 2
* Với S = -3 thì P = 5. Khi đó,x, y là nghiệm phương trình: t2 + 3t + 5 = 0 ( vô nghiệm).
* Với S= 2 thì P = 0. Khi đó, x, y là nghiệm phương trình:
t2 – 2t = 0 ⇔ [ t = 0 t = 2
Do đó, có 2 cặp số thỏa mãn là ( 0; 2) và(2; 0).
Chọn B.
1) Giai he pt:
a) x2 = 3x - y va y2 = 3y - x b) x + y + xy = 5 va x2 + y2 =5
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022