Tìm GTNN của A=xy+yz+xz-12xyz với x,y,z là các số dương và x+y+z=1
Tìm GTNN của A=xy+yz+xz-12xyz với x+y+z=1
Áp dụng BĐT cosi ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\) => \(xyz\le\frac{1}{27}\)
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge9xyz\)(do \(xyz\le\frac{1}{27}\))
=> \(A\ge9xyz-12xyz=-3xyz\ge-\frac{3}{27}=-\frac{1}{9}\)
MinA=-1/9 khi x=y=z=1/3
_Tìm x , y , z nguyên dương thỏa mãn xy + xz + yz = 3xyz
_Cho x , y là các số dương và x + y = z . Tìm GTNN của N=(1-4:x^2)(1-4:y)
Tìm GTNN của A= xy + yz + zx - 12xyz với x.y>0 và x + y +z=1
Áp dụng schwarz , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=9\Rightarrow \frac{xy+yz+zx}{xyz}\geq 9\Rightarrow xy+yz+zx\geq 9xyz\)
\(\Rightarrow A\geq 9xyz-12xyz=-3xyz\)
Theo bất đẳng thức Cauchy , ta có :
\(\sqrt[3]{xyz}\leq \frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\leq \frac{1}{27}\Rightarrow -3xyz\geq \frac{1}{9}\)
Vậy \(Min A=-\frac{1}{9}\Leftrightarrow x=y=z=\frac{1}{3}\)
Tìm GTNN
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)với x,y,z là các số dương và \(x^2+y^2 +z^2=1\)
Bạn dùng HĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) nha
Bài làm :
tự c/m bđt trên.
Áp dụng t đc \(A^2\ge3\left(y^2+x^2+z^2\right)\)
->\(A\ge\sqrt{3}\)
Dấu - xảy ra khi x=x=z và x^2+y^2+z^2=1=>x=y=z=....
Gút lắc
Tuấn làm chuẩn rồi... vậy mà mình cũng không nghĩ ra :v
Cho các số dương x,y,z TM: x+y+z = 1
Tìm GTNN của A = \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
Áp dụng BĐT cô si
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng vế với vế của ba BĐT :
=> \(A\ge x+y+z=1\)
Vậy ....
Cho các số thực dương thỏa mãn điều kiện x^2+y^2+z^2<=2018 Tìm GTNN và GTLN A=x+y+z+xy+xz+yz
Cho các số dương x,y,z biết xy + yz + xz =1.
Tìm GTNN của P = 3(x2+y2)+z2.
Giúp mình với ạ!
Cho x,y,z là các số dương thỏa mãn x+y+z=1. Tìm GTLN của P = \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\)
\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)
\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)
\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)
\(P\le2\left(x+y+z\right)=2\)
\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)
Biết \(x,y,z\) là các số thực dương. Tìm GTNN \(M=\dfrac{x^{14}-x^6+3}{x^2y^2+zx+zy}+\dfrac{y^{14}-y^6+3}{y^2z^2+xy+xz}+\dfrac{z^{14}-z^6+3}{z^2x^2+yz+yx}\)