tìm m để f(x) = x2 -2(m-1) + m-2 \(\le\) 0 \(\forall x\in\left[0;1\right]\)
f(x)= \(x^2+2\left(m-1\right)x+m+5>0\forall x\in R\)
Tìm m để bất phương trình
tìm giá trị lớn nhất của tham số m để f(x)=x2-2(m+1)x+m2+2m<0 \(\forall x\in R\)
Muốn một tam thức bậc 2 nhỏ hơn 0 với mọi x thì hệ số a phải nhỏ hơn 0 và Δ < 0 luôn
Cơ mà 1 > 0 rồi nên không có m thoả mãn
Để f(x)<0
`<=>a<0,\Delta<0`
`<=>1<0` vô lý.
Vậy BPT vô nghiệm
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Cho \(f\left(x\right)=x^2+2mx+2m-3\). Tìm m để f(x)<0 \(\forall x\in\left(-1;2\right)\)
\(\Delta'=m^2-2m+3>0\) ; \(\forall x\)
Do đó bài toán thỏa mãn khi pt \(f\left(x\right)=0\) có 2 nghiệm thỏa mãn: \(x_1< -1< 2< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a.f\left(-1\right)< 0\\a.f\left(2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1-2m+2m-3\right)< 0\\1\left(4+4m+2m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow6m+1< 0\Rightarrow m< -\dfrac{1}{6}\)
Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số \(m\) để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\).
, ( )Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >, ( )
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
b) Tìm m để : f(x) = (m-2)x2-2(m-1)x+m-1 ≤ 0 ∀x
tìm m để : \(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta có : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow m>-\frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)
P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)
Bài vừa rồi mik làm sai nhé :(( Làm lại :
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta thấy : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow2>3m\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
cho \(y=f\left(x\right)=\left(m-3\right)x-2m+1\)
tìm đk của tham số m để \(f\left(x\right)>0\) \(\forall x\in\left[3;4\right]\)
TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)
TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)
\(m-8>0\Rightarrow m>8\)
TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)
\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))
Kết hợp lại ta được \(m>8\)