Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn bá lãng
Xem chi tiết
Đồng Minh Tâm
Xem chi tiết
Đoàn Đức Hà
21 tháng 8 2021 lúc 18:00

Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)

Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)

Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).

Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn. 

Vậy \(n=0\)hoặc \(n=1\).

Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).

Khách vãng lai đã xóa
Nguyễn bá lãng
Xem chi tiết
Trương Tuệ Nga
Xem chi tiết
Trương Tuệ Nga
Xem chi tiết
Lê Tiến Đạt
Xem chi tiết
Le Anh Thi
21 tháng 4 2021 lúc 20:46

a) Nếu n \(\ge\) 3 thì n! sẽ chia hết cho 1;2;3;... Ta có:
3m - n! = 1
3(3m-1 - 1.2...) =1 => vô lí vì 1 không chia hết cho 3
=> n <3.
Nếu n = 2 thì 3m - 2! = 1
3m - 2 = 1
3m =3
=> m = 1.
Nếu n =1 thì 3m - 1! = 1
3m - 1 =1
3m =2 => vô lí => loại
Vậy n = 2; m =1.
b) Nếu n \(\ge\)3 thì n! chia hết cho 1;2;3;... Ta có:
 3m - n! = 2 
3(3m-1 - 1.2...) = 2 => vô lí (vì 2 không chia hết cho 3) => n < 3
Nếu n = 2 thì 3m - 2! = 2
3m - 2 = 2
3m = 4 => vô lí => loại
Nếu n = 1 thì 3m - 1! = 2
3m - 1 = 2
3m = 3
=> m = 1.
Vậy n = 1; m = 1

Khách vãng lai đã xóa
Lê Tiến Đạt
22 tháng 4 2021 lúc 20:47

Cảm ơn bn !

Khách vãng lai đã xóa
Thủy lê thanh
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 2 2016 lúc 21:56

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Nguyễn Văn Việt Dũng
6 tháng 2 2016 lúc 21:51

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

Đỗ Thị Mỹ Hà
Xem chi tiết