Cho biểu thức: A=\(\frac{\sqrt{x}+3}{5-\sqrt{x}}\) ; B= \(\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)( x≥0, x≠25)
b) Rút gọn biểu thức B.
c) Tìm giá trị lớn nhất của biểu thức P biết P = B:A
Cho biểu thức: A = \(\left(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị của x sao cho A =< \(-\frac{2}{5}\)
Cho biểu thức A = \(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) với x ≠ 9, x ≥ 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để B > A
a) \(A=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(A=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(A=\frac{\sqrt{3}+1}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}\)
\(A=1\)
b) Ta có:
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) ( x >= 0, x khác 9 )
\(B=\frac{3+\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{\left(3+\sqrt{x}\right)+3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4\left(3+\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4}{3-\sqrt{x}}\)
Để B > A
\(\Rightarrow\frac{4}{3-\sqrt{x}}>1\)
\(\Rightarrow4>3-\sqrt{x}\)
\(\Rightarrow4-3+\sqrt{x}>0\)
\(\Rightarrow1+\sqrt{x}>0\)
\(\Rightarrow\sqrt{x}>-1\)
\(\Rightarrow x>1\)
a) A=\(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}+\frac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\left(\sqrt{5}+3\right)-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}+0=1\)
b) B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(=\frac{3+\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{9-x}\)
\(=\frac{3+\sqrt{x}+3\sqrt{x}-x}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\text{}\sqrt{x}+12}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(=\frac{4}{3-\sqrt{x}}\)
\(B>A \Leftrightarrow\frac{4}{3-\sqrt{x}}>1\)
các giá trị của x là \(\left\{x\in R\backslash0\le x\le9\right\}\)
Cho biểu thức:
A=\(\left(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) rút gọn biểu thức A
b) tìm các giá trị của x để \(\frac{1}{A}\le\frac{-5}{2}\)
Cho biểu thức: \(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a)Rút gọn biểu thức
b)Tính P với \(x=\frac{\sqrt{4+2\sqrt{3}}\left(\sqrt{x}-1\right)}{\sqrt{6+2\sqrt{5}-\sqrt{5}}}\)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho hai biểu thức:
A = \(\frac{5+2\sqrt{5}}{\sqrt{5}}-\left(2\sqrt{5}+3\right)+\sqrt{80}\)
B = \(\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{x-4}{\sqrt{x}+2}\) với x > 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để giá trị biểu thức A bằng giá trị biểu thức B
\(A=\frac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}-2\sqrt{5}-3+4\sqrt{5}=\sqrt{5}+2-2\sqrt{5}-3+4\sqrt{5}=3\sqrt{5}-1\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}+2}=\sqrt{x}+1+\sqrt{x}-2=2\sqrt{x}-1\)
b/ \(3\sqrt{5}-1=2\sqrt{x}-1\Leftrightarrow\sqrt{x}=\frac{3\sqrt{5}}{2}\Leftrightarrow x=\frac{45}{2}\)
Cho biểu thức :\(A=\frac{\sqrt{x}}{1+\sqrt{x}}\) và \(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với \(x\ge0;x\ne9;x\ne4\) )
1, Tính giá trị biểu thức A khi \(x=3-2\sqrt{2}\)
2, Rút gọn biểu thức B
3, Tìm giá trị nhỏ nhất của biểu thức P=A:B
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0
1.
a.Cho biểu thức \(N=\frac{\sqrt{x}+\sqrt{7}}{\sqrt{x}-7}\) . Với giá trị nào của x thì biểu thức N xác định
b.Khử mẩu của biểu thức lấy căn \(\sqrt{\frac{-5}{3x}}\)(x khác 0)
c. Tính \(\sqrt{\sqrt{3}-\sqrt{1-\sqrt{21}-12\sqrt{3}}}\)
2.
a. Rút gọn biểu thức
b.Tính giá trị của biểu thức \(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
3. Cho biểu thức \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\sqrt{x}+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)\(\left(x\ge0\right)\left(x\ne0\right)\)
a. Rút gọn
b.Tìm tất cả các giá trị của x để \(P< -\frac{1}{3}\)