Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Trung Hải
Xem chi tiết
Yen Nhi
3 tháng 12 2021 lúc 21:42

Answer:

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)

\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)

\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)

\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)

Mà ta có: \(S=16276⋮313\)

Vậy \(S⋮313\)

Khách vãng lai đã xóa
minqưerty6
Xem chi tiết
HT.Phong (9A5)
21 tháng 10 2023 lúc 11:46

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

Trần Hoàng Trung Hải
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 15:02

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)

Trần Hoàng Trung Hải
Xem chi tiết
Kirito Asuna
28 tháng 10 2021 lúc 15:18

\(S=5^2+5^4+5^6+.....+5^{2020}\)

Biết rằng mỗi số mũ của tổng các lũy thừa là số chẵn cách nhau 3 đơn vị

\(S=5^2+2^1-5^1\)

\(S=7^3-5^1\)

\(S=5^2:1^1\)

\(S=4^1\)

Khách vãng lai đã xóa
Trần Hoàng Trung Hải
28 tháng 10 2021 lúc 16:42

còn chứng minh S chia hết cho 313 nữa mà bạn

Khách vãng lai đã xóa
Nguyễn Bích Ngọc
Xem chi tiết
Phan Ngọc Bảo Trân
Xem chi tiết
Nguyễn Tuyết Nhung
Xem chi tiết
THE HAND ON FIRE
31 tháng 10 2019 lúc 14:50

S=(6+51+52+53+.........52020)x20

S=20x(51+52)+20x(53+54)+...........20x(52019+52020)+20x6

S=20x30+20x(53+54)+20x6+.........+20x(52019+52020)

S=600+120+20x(53+54)...........+20x(52019+52020)

Ta có:600+120+20x(53+54)+.........+20x(52019+52020):hết cho 120

Vì 600:hết cho 120;120:hết cho 120;20x(53+54)+.............+20x(52019+52020):hết cho 120

Nên S : hết cho 120

Khách vãng lai đã xóa
Minh Hoàng Nguyễn
Xem chi tiết
Phạm Hương Giang
Xem chi tiết

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(S=5.6+5^3.6+...+5^{2003}.6\)

\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6 

Anh2Kar六
20 tháng 2 2018 lúc 8:52

S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
        
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2  chia hết cho 65
Vậy S chia hết cho 65

Bùi Vương TP (Hacker Nin...
20 tháng 9 2018 lúc 15:36

(2004-1):1+1=2004(số hạng)

Vì 2004=4.501 nên ta viết S thành 501 nhóm mỗi nhóm có 4 số hạng như sau:

S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)

S=5.(1+5+5^2+5^3)+...+5^2001.(1+5+5^2+5^3)

S=5.156+...+5^2001.156

S=5.26.6+...+5.26.6.5^2000

S=130.6+...+130.6.5^2000

S=130.(6+...+6.5^2000)

S chia hết cho 130 (ĐPCM)