Số nguyên a nhỏ nhất để số hữu tỉ x =a-3/2 nhận giá trị dương là a =
Số nguyên a nhỏ nhất để số hữu tỉ x=a-3/2 nhận giá trị dương là a=...........
Số nguyên a nhỏ nhất để số hữu tỉ x= \(\frac{a-3}{2}\)nhận giá trị dương là a=....
Bài giải
\(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất
\(\Rightarrow\text{ }\frac{a-3}{2}=1\)
\(\Rightarrow\text{ }a-3=2\)
\(a=2+3\)
\(x=5\)
Bài giải
\(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất
\(\Rightarrow\text{ }\frac{a-3}{2}=1\)
\(\Rightarrow\text{ }a-3=2\)
\(a=2+3\)
\(x=5\)
Trả lời
\(\frac{a-3}{2}\)đạt giá trị dương khi (a-3) chia hết cho 2.
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\)đạt giá trị nguyên dương nhỏ nhất.
=>\(\frac{a-3}{2}=1\)
=>\(a-3=2\)
\(a=3+2\)
\(a=5\)
Vậy số hữu tỉ x=5
Số nguyên a nhỏ nhất để số hữu tỉ x = \(\frac{a-3}{2}\)nhận giá trị dương là a =......
Bài 1: Tìm x thuộc Z để A= \(\frac{x-5}{9-x}\)
a) Là số hữu tỉ dương
b) Không là số hữu tỉ dương mà cũng không là số hữu tỉ âm
c) A có giá trị là số nguyên
d) A có giá trị lớn nhất, nhỏ nhất
số nguyên a nhỏ nhất để sở hữu tỉ x = \(\frac{a-3}{2}\)
nhận giá trị dương a=.........
giúp mình nha
Tìm x ∈ Z để A = \(\dfrac{x-5}{9-x}\):
a, Là số hữu tỉ dương
b, Không là số hữu tỉ dương, không là số hữu tỉ âm
c, Có giá trị là số nguyên
d, Có giá trị lớn nhất? Nhỏ nhất?
Mình chỉ cần giải câu c và d thôi, giải và trình bày đúng công thức ạ!
a: Để A là số hữu tỉ dương thì \(\dfrac{x-5}{9-x}>0\)
\(\Leftrightarrow\dfrac{x-5}{x-9}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x-9< 0\end{matrix}\right.\Leftrightarrow5< x< 9\)
b: Để A không là số hữu tỉ dương cũng không là số hữu tỉ âm thì x-5=0
hay x=5
c: Để A là số nguyên thì \(x-5⋮9-x\)
\(\Leftrightarrow4⋮x-9\)
\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{10;8;11;7;13;5\right\}\)
Cho số hữu tỉ A=3/x-1 (x thuộc Z)
a,Tìm x để A là số hữu tỉ.
b,Tìm x để A thuộc Z.
c,Tìm x để A đạt giá trị lớn nhất.
d,Tìm x để A đạt giá trị nhỏ nhất
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
Tìm x, biết:
a) / x-2 / = 2x+1
b) / 2x-3 / + 2017 có giá trị nhỏ nhất
c) 199 - / x+3 / có gia strij lớn nhất
d) 37 - / 17.x+3/ không là số hữu tỉ âm, không là số hữu tỉ dương.
cho số hữu tỉ x=\(\frac{2m-8}{-2017}\)với giá trị nào của m thì x là
a)số hữu tỉ dương
b)số hữu tỉ âm
c)không âm,không dương
Bài 2
tìm điều kiện của x để số hữu tỉ C=\(\frac{2x-4}{x+3}\)là số nguyên và tính giá trị đó
Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên