Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Min Hoo
Xem chi tiết
Khánh Vy
Xem chi tiết
ĐIỀN VIÊN
26 tháng 1 2022 lúc 10:37

D

Như Nguyệt
26 tháng 1 2022 lúc 10:37

Bé Moon
26 tháng 1 2022 lúc 10:40

d

mai nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 20:02

Câu 1: B

Câu 2:Sửa đề: \(AD^2=DE^2+AE^2\)

=> Chọn A

Câu 3: Chọn D

Câu 4: \(EF=3\sqrt{2}cm\)

Gaming DemonYT
22 tháng 2 2021 lúc 19:13

Câu 1 là 70 bạn nhé

N.Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 23:28

Chọn A

Lương Xuân Hiếu
Xem chi tiết
thắng
14 tháng 5 2021 lúc 9:34

a, xét tam giác ABM và tam giác ACM có:

AB=AC

AM chung

BM=CM

=> tam giác ABM= tam giác ACM (c.c.c)

b,

Tam giác ABM= tam giác ACM => góc BAM= góc CAM

=> AM là tia phân giác của góc BAC

c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC

=> A, M, N thẳng hàng

Khách vãng lai đã xóa
Nguyễn Thu Hà
Xem chi tiết
Đào Minh Khang
Xem chi tiết
nhunhugiahan
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
18 tháng 2 2020 lúc 23:39

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

Khách vãng lai đã xóa
Nguyễn lan anh
18 tháng 2 2020 lúc 23:53

bài này dễ sao không biết

Khách vãng lai đã xóa
nameless
19 tháng 2 2020 lúc 0:52

Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
      ∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
    Mà AC + CE = AE
          AB = AC (GT)
          BD = CE (GT)
=> AD = AE 
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o 
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù) 
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
      ∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....

Khách vãng lai đã xóa
chipham
Xem chi tiết