Giả sử ba đường thẳng AA', BB', CC' đồng quy tại điểm O trong △ABC ( A'∈BC, B'∈CA, C'∈AB). Chứng minh rằng
OA/OA'=B'A/B'C+C'A/C'B.
Cho tam giác ABC và ba điểm A’, B’, C’ lần lượt nằm trên ba cạnh BC, CA, AB sao cho AA’, BB’, CC’ đồng quy. (A’, B’, C’ không trùng với các đỉnh của tam giác ABC). Chứng minh rằng:
\(\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Định lý Ceva phải không?
Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!
Chắc định lý Ceva rồi. Mình không biết là mình có ghi lại cách chứng minh không.
cho tam giác abc và 3 điểm a',b',c'lần lượt nằm trên 3 cạnh bc,ca,ab sao cho aa',bb',cc' đồng quy. cmr \(\frac{a'b}{a'c}.\frac{b'c}{b'a}.\frac{c'a}{c'b}\)=1
Cho tam giác ABC và 3 điểm A', B', C' lần lượt thuộc các cạnh BC, CA, AB sao cho AA', BB', CC' đồng quy (A', B', C' không trùng với các đỉnh của tam giác ). CM: \(\dfrac{A'B}{A'C}.\dfrac{B'C}{B'A}.\dfrac{C'A}{C'B}=1\)
Đây là định lý Ceva nhé bạn!
Giả sử AA', BB', CC' đồng quy tại O.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).
Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).
Nhân vế với vế của các đẳng thức trên ta có đpcm.
P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)
chứng minh rằng nếu một đường không đi qua các đỉnh của tam giác ABC và cắt các đường thẳng BC,CA,AB theo thứ tự ở A', B', C' thì (A'B/A'C).(B'C/B'A).(C'A/C'B)=1
mk mới tạo tài khoảng nên ko bt lm nhiều nên mấy bạn thông cảm(đúng thì mk tick nha)
Em tham khảo cách chứng minh định lí Menelauyt.
Cho tam giác ABC có BC = a, CA = b, AB = c và tam giác A'B'C' có B'C' = a', C'A' = b, A'B' = c. Chứng minh rằng nếu góc A + góc A' và góc B = góc B' thì aa' = bb' + cc'.
Cho tam giác ABC. Dựng \(\overrightarrow{AB'}=\overrightarrow{BC};\overrightarrow{CA'}=\overrightarrow{AB};\overrightarrow{BC'}=\overrightarrow{CA}\)
a) Chứng minh rằng A là trung điểm của B'C'
b) Chứng minh các đường thẳng \(AA';BB'\) và \(CC'\) đồng quy
a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.
Cho điểm O nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC lần lượt tại A', B', C'. Chứng minh:
a) OA'/AA' +OB'/BB' +OC'/CC' =1.
b) BA'/A'C + CB'/B'A + AC'/C'B = 1
Các bạn giải bài này dựa vào diện tích tam giác nhé. Cảm ơn mn <3
cho tam giác abc các điểm a';b';c' trên các cạnh bc;ac;ab sao cho các đường thẳng aa';bb';cc' đồng quy tại m chứng minh rằng am/a'm=ab'/cb'+ac'/bc'