Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anime Tổng Hợp
Xem chi tiết
KCLH Kedokatoji
19 tháng 2 2020 lúc 15:46

Định lý Ceva phải không?

Khách vãng lai đã xóa
Anime Tổng Hợp
19 tháng 2 2020 lúc 15:52

Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!

Khách vãng lai đã xóa
KCLH Kedokatoji
19 tháng 2 2020 lúc 15:56

Chắc định lý Ceva rồi. Mình không biết là mình có ghi lại cách chứng minh không.

Khách vãng lai đã xóa
Nguyễn Thị Huyền Chi
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Minh Hoàng
12 tháng 1 2021 lúc 15:45

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)

nguyễn đức hưởng
Xem chi tiết
Nguyễn Linh Chi
28 tháng 2 2020 lúc 13:39

Em tham khảo cách chứng minh định lí Menelauyt. 

Khách vãng lai đã xóa
Ex Crush
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
15 tháng 5 2017 lúc 9:06

a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
A B C B' C' A'
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.

Hang Le
Xem chi tiết
Phạm Hoàng Anh
Xem chi tiết