Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Anh
Xem chi tiết
nguen quang huy
18 tháng 7 2015 lúc 19:55

bài 1 : a +b , rút gọn và tính

(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b-2.1+2.-1=-2+-2 = -4

 

Takumi Usui
Xem chi tiết
Phùng Minh Quân
29 tháng 10 2018 lúc 17:04

Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)

Chúc bạn học tốt ~ 

Takumi Usui
29 tháng 10 2018 lúc 16:50

mn làm giúp mk vs

Phạm Tuấn Đạt
29 tháng 10 2018 lúc 17:16

\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{\sqrt{a^2-b^2}b}\)

\(=\frac{ab-a^2+a^2-b^2}{\sqrt{a^2-b^2}b}\)

\(=\frac{b\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}b}\)

\(=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

b, Thay a = 3b

\(=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2}{4}}=\sqrt{\frac{1}{2}}\)

hoangyennhi10_06
Xem chi tiết
Vu Dang Toan
13 tháng 8 2016 lúc 8:43

\(\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}\)=( \(\sqrt{a}+\sqrt{b}\))( a + \(\sqrt{ab}\)+ b ) / \(\sqrt{a}+\sqrt{b}\)

                                        = a + \(\sqrt{ab}\)+ b 

hoangyennhi10_06
Xem chi tiết
Vu Dang Toan
13 tháng 8 2016 lúc 8:44

bài này cũng tương tự câu trên vậy tách màu ra là tính được mà . đâu có khó gì đâu bạn . 

Huy Hoang
27 tháng 9 2020 lúc 10:33

Biến đổi vế trái :vvv

\(VT=\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\frac{a+b}{b^2}.\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)

\(=\frac{a+b}{b^2}.\frac{\left|ab^2\right|}{\left|a+b\right|}\)

\(=\frac{a+b}{b^2}.\frac{b^2.\left|a\right|}{a+b}=\left|a\right|=VP\left(đpcm\right)\)

( Vì a + b > 0 nên | a + b | = a + b ; b> 0 )

Khách vãng lai đã xóa
Huỳnh Quỳnh Như
Xem chi tiết
Lê Thị Thục Hiền
15 tháng 6 2021 lúc 12:47

\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)

a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)

b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)

c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)

Với x=-1 (ktm đk)

Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)

d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2019 lúc 8:16

(a - b)(a - b) = a.a - a.b - b.a + b.b

= a2 - 2ab + b2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2019 lúc 16:03

(a + b)(a + b) = a.a + a.b + b.a + b.b

= a2 + 2ab + b2

Song Tử
Xem chi tiết
ミ★ήɠọς τɾίếτ★彡
27 tháng 12 2020 lúc 18:31

a)   (b-c)-(b+a-c)

   =    b-c-b-a+c 

   =  (b-b)-(c-c)+a

  =    0    -  0    +a

=   a

b)    (a-b)-(-b+a-c)

=a-b-b-a+c

=(a-a)-(b-b)+c

=0     -   0   +c

=c

c)  (a+b)-(a-b)+(a-c)-(a+c)

=   a+b-  a+b  +a-c   -  a-c

=           0        +     0

=0  

(chắc vậybucminh)

Phạm Thị Thanh Huyền
Xem chi tiết