Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vô Ưu
Xem chi tiết
Ngoc Anh Thai
22 tháng 5 2021 lúc 10:53

a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)

Suy ra \(\widehat{KBC}=\widehat{CBH}\).

Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\) 

Vậy tam giác BHK cân tại B và BC là trung trực của HK.

b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).

\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)

Xét hai tam giác ABD và AMC có: 

\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).

Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).

Suy ra góc ABC = AEF => góc AEF = góc AMC.

Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)

d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC. 

Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 8:49

loading...  loading...  loading...  

Mèo con dễ thương
Xem chi tiết
Giản Nguyên
27 tháng 5 2018 lúc 9:44

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

Tôi Vô Danh
1 tháng 4 2019 lúc 22:15

em moi lop 6 huhuhuhuhuhu

nguyen van bi
20 tháng 9 2020 lúc 10:47

HỎI TỪNG CÂU THÔI !

Khách vãng lai đã xóa
ekhoavvdd
Xem chi tiết
ekhoavvdd
14 tháng 3 2021 lúc 14:46

ai đó làm giúp với

 

Xuân Hùng Hoàng
Xem chi tiết
Thanh Hân
Xem chi tiết
41 Thu Trang Lớp 9/7
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 10:36

a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

b: Gọi giao của AH với BC là N

=>AH vuông góc BC tại N

góc IEO=góc IEH+góc OEH

=góc IHE+góc OCE

=90 độ-góc OCE+góc OCE=90 độ

=>IE là tiếp tuyến của (O)

Hạ Mặc Tịch
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
An Thy
23 tháng 6 2021 lúc 16:20

a) Vì MA là tiếp tuyến \(\Rightarrow\angle MAB=\angle MCA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle AMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Rightarrow MA^2=MB.MC\)

b) Vì \(DE\parallel AM\) và \(AM\bot AO\) (tiếp tuyến) \(\Rightarrow DE\bot AO\)

\(\Rightarrow\angle OAD+\angle ADE=90\)

Ta có: \(\angle OAD=\dfrac{180-\angle AOC}{2}\) (\(\Delta OAC\) cân tại O) \(=90-\dfrac{1}{2}\angle AOC\)

\(=90-\angle ABC\)

\(\Rightarrow\angle ADE=\angle ABC\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle BEC=\angle BDC=90\)

\(\Rightarrow\) CE là đường cao

c) Vì N là điểm chính giữa cung BC \(\Rightarrow\angle BAN=\angle CAN\)

\(\Rightarrow AN\) là phân giác

Ta có: AI là phân giác \(\angle BAD\Rightarrow\dfrac{IB}{ID}=\dfrac{AB}{AD}\left(1\right)\)

AK là phân giác \(\angle CAE\Rightarrow\dfrac{KC}{KE}=\dfrac{AC}{AE}\left(2\right)\)

Xét \(\Delta DAB\) và \(\Delta EAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AEC=\angle ADB=90\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta DAB\sim\Delta EAC\left(g-g\right)\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AE}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\dfrac{IB}{ID}=\dfrac{KC}{KE}\)

Theo đề: \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\Rightarrow\left(\dfrac{AB}{AD}\right)^2=2\dfrac{AB}{AD}\Rightarrow\dfrac{AB}{AD}=2\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{1}{2}\Rightarrow cosBAC=\dfrac{1}{2}\Rightarrow\angle BAC=60\)

Vậy tam giác ABC có \(\angle BAC=60\) thì \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\)