Chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12).(n+7) luôn chia hết cho 3.
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Chứng tỏ rằng với mọi số tự nhiên n,(n + 7)(n + 8) luôn chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n,(n + 7)(n + 8) luôn chia hết cho 2
Với mọi n \(\inℕ\Rightarrow\orbr{\begin{cases}n=2k+1\\n=2k\end{cases}}\left(k\inℕ\right)\)
Khi k = 2k + 1
=> (n + 7)(n + 8) = (2k + 1 + 7)(2k + 1 + 8) = (2k + 8)(2k + 9) = 2(k + 4)(k + 9) \(⋮\)2(1)
Khi k = 2k
=> (n + 7)(n + 8) = (2k + 7)(2k + 8) = 2(2k + 7)(k + 4) \(⋮\)2 (2)
Từ (1)(2) => (n + 7)(n + 8) \(⋮\)2\(\forall\)x \(\inℕ\)
Nếu n chẵn thì n+7 lẻ ; n+8 chẵn ; n chẵn nên n(n+7)(n+8) chẵn
Nếu n lẻ n lẻ ; n +7 chẵn ; n+8 lẻ mà trong phép nhân,ta có lẻ x lẻ x chẵn = chẵn nên n(n+7)(n+8) chẵn
Từ 2 điều trên ta có ĐPCM
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
chứng tỏ rằng với mọi số tự nhiên n thì tích nx(n+3) luôn chia hết cho 2
n là số lẻ thì số lẻ + số lẻ =số chẵn và nó nhân n sẽ chia hết cho 2
n là số chẵn thì n x mấy vẫn chia hết cho 2
Xét
-n là số lẻ =>n+3=số chẵn=>nx(n+3) chia hết cho 2
-n chẵn thì nx(n+3)chia hết cho 2
vài cái nhé
Ta xét 2 trường hợp
- Trường hợp 1: Nếu n là số lẻ
=> n+3 là số chẵn và chia hết cho 2
=> n(n+3) chia hết cho 2 (Vì n+3 chia hết cho 2)
- Trường hợp 2: Nếu n+3 là số lẻ
=> n là số chẵn và chia hết cho 2
=> n(n+3) chia hết cho 2 (Vì n chia hết cho 2)
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
chứng tỏ rằng với số tự nhiên n thì tích (n+3).(n-1).(n+7) luôn chia hết cho 3 ?
Xét 3 trường hợp:
+) Nếu n chia hết cho 3 => n= 3k =>3k+3 chia hết cho 3
=>n+3 chia hết cho 3=> (n+3).(n-1).(n+7) chia hết cho 3
+) Nếu n chia 3 dư 1 =>n=3k+1
=>n-1=3k+1-1=3k chia hết cho 3
=>n-1 chia hết cho 3
=>(n+3).(n-1).(n+7) chia hết cho 3
+) Nếu n chia 3 dư 2
=>n=3k+2 =>n+7=3k+2+7=3k+9 = 3.(k+2) chia hết cho 3
=>n+7 chia hết cho 2
=>(n+3).(n-1).(n+7) chia hết cho 3
Từ 3 TH trên =>đpcm
Bài 1: Khi chia số tự nhiên a cho 148 ta được số dư là 111. Hỏi a có chia hết cho 37 không ? Vì sao?
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 12) là số chia hết cho 2
Bài 3: Chứng minh rằng: ab ba + chia hết cho 11 Bài 7: Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
Bài 4: Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
Bài 5: Tìm số tự nhiên n để (3n + 4) chia hết cho n – 1.
giúp mình nha!!!=333
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)