Nhị thức sau đây dương với mọi x > -2 là:
A. 6 -3x B. 2x – 3 C. x - 2 D. 2x + 6
nhị thức sau đây dương với mọi x>-2 là
a.6-3x
b.2x-3
c.x-2
d.2x+6
1 tam thức y= x^2-2x-3 nhận giá trị dương khi và chỉ khi:
A x<-3 hoặc x>-1 B x<-1 hoặc x>3
C x<-2 hoặc x>6 D -1<x<3
2 nhị thức nào sau đây nhận giá trị dương vs mọi x nhỏ hơn 2?
A f(x)= 3x+6 B f(x)= 6-3x
C f(x)= 4-3x D f(x)= 3x-6
3 nhị thức nào sau đây nhận giá trị âm vs mọi số x nhỏ hơn -2/3?
A f(x)= -6x-4 B f(x)= 3x+2
C f(x)= 3x-2 D f(x)= 2x+3
Nhị thức nào sau đây nhận giá trị dương với mọi x>-2
A. 2x-1 B.2x+5 C.x-2 D.6-3x
Giải kiểu tự luận ạ.
Chứng minh biểu thức sau luôn có giá trị dương với mọi giá trị của biến:
a,x^2+3x+3
b,x^2+y^2+2(x-2y)+6
c,2x^2+y^2+2x(y-1)+2
a)
\(=x^2+2.1,5x+1.5^2+0,75\)
\(=\left(x+1.5\right)^2+0,75\)
Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương
b)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)
Lập luận tương tự câu a), được biểu thức luôn dương
c)
\(=x^2+2xy+y^2+x^2-2x+1+1\)
\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)
Lập luận tương tự
Phân tích các phân thức sau thành tổng các phân thức mà mẫu thức là các nhị thức bậc nhât:
a) (2x-1)/(x^2-5x+6)
b) (x^2+2x+6)/(x-1)(x-2)(x-4)
c) (3x^2+3x+12)/(x-1)(x+2)x
a) = \(\frac{2x}{\left(x-2\right)\left(x-3\right)}\)-\(\frac{1}{\left(x-2\right)\left(x-3\right)}\)
các bài sau tt
Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x
1,A=x2+4x+6
2,B=x2+x+1
3,C=2x2+4x+3
4,D=4x2+4x+2
5,K=4x2+3x+2
6,L=2x2+3x+4
Nhanh nha!Thank!
a, \(x^2+4x+6\)
\(=x^2+2x+2x+4+2\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)
\(=\left(x+2\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)
Vậy......
b, \(x^2+x+1\)
\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy......
c, \(2x^2+4x+3\)
\(=2x^2+2x+2x+2+1\)
\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)
\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)
\(=2\left(x+1\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy......
Mấy câu còn lại làm tương tự!
Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "
Chúc bạn học tốt!!!
1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)
...
2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
...
3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)
...
\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)
...
\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)
...
\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)
CMR biểu thức sau luôn dương với mọi x khác 3
\(\dfrac{x^3-3x^2+2x-6}{3x-y}\)
RÚT GỌN CÁC BIỂU THỨC SAU:
a . B=|-x+1|+|2x-3|-2.(x-1)
b . C=|x-2|+|x+3|-2.|x-4|
c . D=|2x-4|-|x-2|-|x+1|-|3x-6|
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI