cho phương trình (m-2)x=3m-3
a) giải và biện luận pt
b) với m nguyên nào thì pt có nghiệm nguyên
cho phương trình \(m^2\)x +6= 4x+3m a) giải pt khi m=3 b) tìm m để pt có nghiệm x= 1,5 c) tìm m để pt có nghiệm vô nghiệm vô số nghiệm d) tìm m nguyên để pt trên có nghiệm
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
Cho hệ phương trình: \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{cases}}\)
a) Giải và biện luận hệ theo m.
b) Với giá trị nguyên nào của m thì hệ pt có nghiệm duy nhất (x;y) sao cho x>0, y<0
c) Xác Định m để hệ pt có nghiệm duy nhất (x;y) mà P=\(x^2\)+\(y^2\) đạt GTNN
**Giúp mình với =.=!!
Cho hệ phương trình \(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\) (m là tham số)
a,Giai hệ với m=3
b, Giai và biện luận hệ pt
c, tìm m nguyên để hệ pt có nghiệm (x,y) nguyên
Bài 6: Cho phương trình m2(x – m) = x – 3m + 2 (*)
a, Tìm m để (*) là phương trình bậc nhất một ẩn
b, Giải PT khi m = 0
c, Tìm m để (1) có nghiệm x = 3
d, Tìm m nguyên để x nguyên
a: =>m^2x-m^3-x+3m-2=0
=>x(m^2-1)=m^3-3m+2
=>x(m-1)(m+1)=m^3-m-2m+2=m(m-1)(m+1)-2(m-1)=(m-1)^2*(m+2)
Để đây là pt bậc nhất 1 ẩn thì (m-1)(m+1)<>0
=>m<>1 và m<>-1
b: Khi m=0 thì pt sẽ là x+2=0
=>x=-2
c: Khi x=3 thì pt sẽ là:
3(m^2-1)=m^3-3m+2
=>(m-1)^2(m+1)-3(m-1)(m+1)=0
=>(m-1)(m+1)(m-1-3)=0
=>(m-1)(m+1)(m-4)=0
=>\(m\in\left\{1;-1;4\right\}\)
Cho hệ PT \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\) (m là tham số)
a, giải và biện luận hệ pt theo m
b, xác định giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) sao cho x>0,y>0
c, với giá trị nào của m thì hệ có nghiệm (x;y) với x,y là các số nguyên dương
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
Cho phương trình mx-2x+3=0
a)Giải phương trình với m=-4
b)Tìm giá trị của m để phương trình có nghiệm x=2
c)Tìm giá trị của m để pt có nghiệm duy nhất
d)Tìm giá trị nguyên của m để pt có nghiệm nguyên
a, mx - 2x + 3 = 0
m = -4
<=> -4x - 2x + 3 = 0
<=> -6x = -3
<=> x = 1/2
b, mx - 2x + 3 = 0
x = 2
<=> 2m - 2.2 + 3 =0
<=> 2m - 1 = 0
<=> m = 1/2
cho phương trình mx^2-2(m+1)x+3m-2=0
a) CMR pt trên luôn có nghiệm với mọi giá rị m
b) Tính giá trị của m để pt trên có các nghiệm là nghiệm nguyên
Cho (4+m^2)x-8m+2-m=0
a) giải phương trình khi m=-5
b) tìm đk để m có nghiệm duy nhất
c) tìm m để pt có nghiệm x=1/4
d) giải và biện luận pt theo
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất