Tìm hệ số của x10 trong khai triển (2+3x)n biết n thõa : \(C_{2n+1}^1+C_{2n+1}^2+..........+C^{2n}_{2n+1}=2^{10}-1\)
Tìm số nguyên dương n sao cho \(C_{2n+1}^1-2.2.C_{2n+1}^2+3.2^2.C_{2n+1}^3-...+\left(2n+1\right).2^{2n}.C_{2n+1}^{2n+1}=2019\)
Xét khai triển:
\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)
Đạo hàm 2 vế:
\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)
\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)
Cho \(x=-1\) ta được:
\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)
\(\Rightarrow2n+1=2019\Rightarrow n=1009\)
Tìm n biết n thỏa mãn: \(C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n=2^{20}-1\)
Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)
\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)
\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)
Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)
\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-1\)
\(\Leftrightarrow2n=20\)
\(\Leftrightarrow n=10\)
tìm hệ số x6 trong khai triển (x2-x-1)n thành đa thức. Trong đó n là số nguyên dương thỏa mãn: \(C_{2n+1}^1+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
chỉ mk cách làm với @Nguyễn Việt Lâm
Xét khai triển:
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)
\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)
\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)
\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)
\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)
\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)
Khai triển: \(\left(x^2-x-1\right)^{10}\)
\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)
Hệ số của \(x^6:\)
\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)
Tìm hệ số của số hạng chứa x20 trong khi khai triển nhị thức \(\left(\dfrac{1}{x^3}+x^2\right)^n\)
Biết: \(C^{n+1}_{2n+1}+C^{n+2}_{2n+1}+C^{n+3}_{2n+1}+...+C^{2n}_{2n+1}=2^{100}-1\)
Ai giải giùm bài này với !!!
Giả thiết tương đương:
\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))
Mặt khác:
\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)
\(C_{2n+1}^{2n}=C_{2n+1}^1\)
....
\(C_{2n+1}^{n+1}=C_{2n+1}^n\)
Cộng vế:
\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)
\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)
\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))
\(\Leftrightarrow2^{101}=2^{2n+1}\)
\(\Rightarrow2n+1=101\)
\(\Rightarrow n=50\)
SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)
\(100-5k=20\Rightarrow k=16\)
Hệ số: \(C_{50}^{16}\)
tìm hệ số x7 trong khai triển (2 -3x)2n biết n thỏa mãn C12n +1 + C32n+1 + .....+C2n+12n+1 =1024
ta có \(\left(1+1\right)^{2n+1}=C_{2n+1}^0+C^1_{2n+1}+C^2_{2n+1}+...+C^{2n+1}_{2n+1}\)
\(-\left(1-1\right)^{2n+1}=-\left(C_{2n+1}^0-C^1_{2n+1}+C^2_{2n+1}-...-C^{2n+1}_{2n+1}\right)\)
\(\left(1+1\right)^{2n+1}-\left(1-1\right)^{2n+1}=C_{2n+1}^0+C^1_{2n+1}+C^2_{2n+1}+...+C^{2n+1}_{2n+1}-C_{2n+1}^0+C_{2n+1}^1-C_{2n+1}^2+....+C_{2n+1}^{2n+1}\)
\(2^{2n+1}=2C_{2n+1}^1+2C_{2n+1}^3+2C_{2n+1}^5+...+C_{2n+1}^{2n+1}=2.1024=2048\)
\(\Rightarrow n=5\)
\(\left(2-3x\right)^{10}\)
SHTQ \(C_{10}^k.2^{10-k}.\left(-3x\right)^k=C_{10}^k.2^{10-k}.-3^k.x^k\)
\(x^7\Rightarrow k=7\)
hệ số cần tìm \(C_{10}^7.2^3.\left(-3\right)^7=-2099520\)
Tìm hệ số của x9 trong khai triển (2-3x)2n , trong đó n là số nguyên dương thỏa mãn:
C12n+1 +C32n+1 +C52n+1+...+C2n+12n+1 =4096
Bài 1:Trong mặt phẳng với hệ toạ độác đường thẳng:
\(d_1:x+y+3=0\)
\(d_2:x-y-4=0\)
\(d_3:x-2y=0\)
Tìm toạ độ điểm M nằm trên đường thẳng \(d_3\) sao cho khoảng cách từ M đến đường thẳng \(d_1\) bằng hai lần khoảng cách từ M đến đường thẳng \(d_2\)
Bài 2: Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển nhị thứ Niutơn của \(\left(\dfrac{1}{x^4}+x^7\right)^n\), biết rằng \(C^1_{2n+1}+C_{2n+1}^2+....+C_{2n+1}=2^{20}-1\)
( n nguyên dương, \(C_n^k\) là tổ hợp chập k của n phần tử)
Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???
1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)
Khoản cách từ M đến \(d_1\) là:
\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)
Khoản cách từ M đến \(d_2\) là:
\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)
Theo đề bài ta có:
\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)
\(\Leftrightarrow a^2+10a-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
2/ Ta có:
\(C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n=2^{20}-1\)
\(\Leftrightarrow2\left(C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}\right)^n=2^{21}\)
\(\Leftrightarrow C_{2n+1}^0+C_{2n+1}^1+C_{2n+2}^2+...+C_{2n+1}^n+...+C_{2n+1}^{2n+1}=2^{21}\)
\(\Leftrightarrow2^{2n+1}=2^{21}\)
\(\Leftrightarrow n=10\)
Ta có số hạng tổng quát trong khai triển của \(\left(\dfrac{1}{x^4}+x^7\right)^{10}\) là:
\(C_{10}^k.\left(\dfrac{1}{x^4}\right)^{10-k}.\left(x^7\right)^k=C_{10}^k.x^{11k-40}\)
Để số hạng chứa \(x^{26}\) thì \(11k-40=26\)
\(\Leftrightarrow k=6\)
Vậy hệ số cần tìm là: \(C_{10}^6\)
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
Cho n là số nguyên dương thỏa mãn A n 2 - 3 C n n - 1 = 11 n . Xét khai triển P x = x - 2 n . Hệ số chứa x 10 trong khai triển là:
A. 384384
B. -3075072
C. -96096
D. 3075072