Cho tam giác ABC. Gọi M là trung điểm BC. Chứng minh rằng:
AB + AC > 2AM
Cho tam giác ABC có BC=2AB . Gọi N là trung điểm của BC và M là trung điểm của BN . Chứng minh rằng AC=2AM
Gọi K là trung điểm của AC
Lúc đó: NK là đường trung bình của \(\Delta ABC\Rightarrow NK//BC,NK=\frac{1}{2}BC\)
Từ giả thiết suy ra \(AB=BN=CN\Rightarrow BM=\frac{1}{2}AB\)
Xét \(\Delta AMB\)và \(\Delta CKN\)có:
AB = CN \(\left(=\frac{1}{2}BC\right)\)
\(\widehat{ABM}=\widehat{CNK}\)(\(AB//NK\), đồng vị)
BM = NK \(\left(=\frac{1}{2}AB\right)\)
Suy ra \(\Delta AMB\)\(=\Delta CKN\left(c-g-c\right)\)
\(\Rightarrow AM=CK\)(hai cạnh tương ứng)
Mà \(CK=\frac{1}{2}AC\Rightarrow AM=\frac{1}{2}AC\)
hay AC = 2AM (đpcm)
Bài giải đây. Link ảnh (nếu lỗi): https://i.imgur.com/eTSzE2I.jpg
Bài 3. Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho
MD=MA.
a) Chứng minh rằng
AB + AC − BC
2
< AM
b) Chứng minh rằng CD=AB, từ đó suy ra 2AM < AC + AB .
Bài 3. Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho
MD=MA.
a) Chứng minh rằng
AB + AC − BC
2
< AM
b) Chứng minh rằng CD=AB, từ đó suy ra 2AM < AC + AB
Bài 6. Cho tam giác ABC cân tại A, M là trung điểm của BC. P là điểm trên tia đối tia AB. Kẻ PD vuông góc với BC (D thuộc BC), gọi E là giao điểm của PD và AC. Chứng minh rằng PD + DE = 2AM.
Cho tam giác ABC, M là trung điểm BC. Chứng minh AB+AC>2AM
trên tia đối của MA lấy D sao cho MA = MD
tam giác ABM = DCM (c.g.c)
=>DC=AB
Xét tam giác ACD có:
DC+AC > AD (bất đẳng thức tam giác)
mà AD=MA+MD(cmt)
DC=AB(cmt)
=>AB+AC>2AM(ĐPCM)
1, Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh rằng: AE vuông góc với ED.
2, Cho tam giác ABC. Gọi M là trung điểm của BC. Vẽ BD vuông góc với AM tại D, CE vuông góc với AM tại E. Chứng minh rằng : AB + AC > 2AM.
Cho tam giác ABC, M là trung điểm của cạnh BC. Chứng minh AB+AC > 2AM
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)