Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Hiếu
Xem chi tiết
Nguyễn Nhật Minh
20 tháng 12 2015 lúc 18:36

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Trần Duy Khanh
Xem chi tiết
Thầy Giáo Toán
23 tháng 8 2015 lúc 0:09

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).

Trần Đức Thắng
Xem chi tiết
BÁ CHỦ ONLINEMATH
18 tháng 12 2015 lúc 22:47

tíc mình rùi mình giải cho

❤  Hoa ❤
Xem chi tiết
tth_new
21 tháng 4 2019 lúc 9:03

a)Chứng minh BĐT phụ sau: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) (m,n>0)  (*)

\(\Leftrightarrow\frac{p^2n+q^2m}{mn}-\frac{p^2+2pq+q^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{p^2n\left(m+n\right)+q^2m\left(m+n\right)-p^2mn-2pqmn-q^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(pq\right)^2-2.qp.mn+\left(qm\right)^2}{mn\left(m+n\right)}\ge0\Leftrightarrow\frac{\left(pn-qm\right)^2}{mn\left(m+n\right)}\ge0\) (đúng)

Dấu "=" xảy ra khi pn = qm.

Áp dụng BĐT (*) 2 lần,ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

tth_new
21 tháng 4 2019 lúc 9:32

b) Có cách này như mình không chắc:

Chuẩn hóa abc = 1.Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

Ta cần chứng minh: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}\ge2.\frac{z}{x}\) (Cô si)

\(\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge2.\frac{x}{y}\)

\(\frac{y^2}{x^2}+\frac{x^2}{z^2}\ge2.\frac{y}{z}\)

Cộng theo vế 3 BĐT trên,ta được:\(2\left(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\right)\ge2\left(\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\right)\)

Suy ra \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y^2}{x^2}=\frac{z^2}{y^2}\\\frac{z^2}{y^2}=\frac{x^2}{z^2}\end{cases}\Leftrightarrow}\frac{y^2}{x^2}=\frac{z^2}{y^2}=\frac{x^2}{z^2}\Leftrightarrow\frac{y}{x}=\frac{z}{y}=\frac{x}{z}\Leftrightarrow a=b=c\)

Ta có:
a, a^2/(b + c) + (b + c)/4 >= a
=> a^2/(b + c) >= a - (b + c)/4 (1)
Tương tự ta có
b^2/(c + a) >= b - (c + a)/4 (2)
c^2/(a + b) >= c - (a + b)/4 (3)
Cộng (1), (2), (3) vế theo vế ta được
 b^2/(a + c) + c^2/(a + b)  >=  a - (b + c)/4 +  b - (c + a)/4 +  c - (a + b)/4
= (a + b + c)/2
Dấu = xảy ra khi a = b = c

Nguyễn Thị Nga
Xem chi tiết
Võ Thị Quỳnh Giang
13 tháng 10 2017 lúc 14:26

áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\)  (vì b>0)

\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\)     (1)

c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\)  (2)

\(\frac{c^3}{a}+a^2\ge c^2+ca\)    (3)

Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm

alibaba nguyễn
13 tháng 10 2017 lúc 14:11

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Diệp Song Thiên
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Châu Giang
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 8 2016 lúc 8:34

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )

\(\Leftrightarrow\) ĐPCM

Hà Phương
Xem chi tiết
Nguyễn An Khươnh
31 tháng 10 2015 lúc 7:11

Áp dụng bđt Cauchy, ta có:

\(\sqrt{\frac{a}{bc}}\)+\(\sqrt{\frac{b}{ca}}\)≥ \(2\sqrt{\sqrt{\frac{ab}{abc^2}}}\)\(2\sqrt{\sqrt{\frac{1}{c^2}}}\)\(2\sqrt{\frac{1}{c}}\) (vì c>0)

Tương tự: \(\sqrt{\frac{b}{ca}}\)+\(\sqrt{\frac{c}{ab}}\)≥ \(2\sqrt{\frac{1}{a}}\)

                \(\sqrt{\frac{c}{ab}}\)+\(\sqrt{\frac{a}{bc}}\)≥ \(2\sqrt{\frac{1}{b}}\)

Cộng vế theo vế của các bđt với nhau, ta có: \(2\)\(\left(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\right)\text{≥}\)\(2\left(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\right)\)

                                                             <=> \(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\text{≥}\)\(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)(đpcm)

Dấu "=" xảy ra <=> a = b = c