\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
Tính \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(M=2^{10}\)
\(M=1024\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+\left(4^3\right)^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+4^{15}}\)
\(=\frac{4^{20}.\left(4^{10}+1\right)}{4^{25}.\left(4^{10}+1\right)}=\frac{1}{4^5}=\frac{1}{1024}\)
Tính M= \(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt ^^
Tính :
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
= \(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
tính :
M = \(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
các bạn giúp mk giải kĩ vào nhé
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)+\left(2^6\right)^5}\)
\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(M=\frac{2^{40}\cdot2^{20}+2^{40}\cdot1}{2^{30}\cdot2^{20}+2^{30}\cdot1}\)
\(M=\frac{2^{40}\cdot\left(2^{20}+1\right)}{2^{30}\cdot\left(2^{20}+1\right)}\)
\(M=\frac{2^{40}}{2^{30}}\)
\(M=2^{40-30}\)
\(M=2^{10}\)
\(M=1024\)
M=820 +420/425+645
M=(23)20+(22)20/(22)25+(25)5
M=260+240/250+225
M=225(235+215)/225(225+1)
M=235+215/225+1
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{100}}{2^{80}}\)=220
Tính M=8^20+4^20/4^25+64^5
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=2^{10}=1024\)
#)Giải :
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{40}.2^{20}+2^{40}.1}{2^{30}.2^{20}+2^{30}.1}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}=1024\)
Ta có 1 cách đơn giản và easy hơn
\(\frac{4^{20}\left(2^{20}+1\right)}{4^{15}+4^{10}+1}=1024\)
Tính
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
Ta có: \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\) \(=\frac{2^{40}.2^{20}+2^{40}}{2^{30}.2^{20}+2^{30}}=\frac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}\)\(=\frac{2^{40}}{2^{30}}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=2^{10}=1024\)
Thực hiện phép tính:
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)=\(\frac{2^{40}}{2^{30}}\)= 210
1) tìm x biết
\(x^{10}=25x^8\)
2) tính M
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
1. \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25=5^2\Leftrightarrow x=5\)
2. \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}\)
1)\(x^{10}=25x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
2)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)