Tìm GTLN của \(\sqrt{x-1}+\sqrt{y-2}\)biết x+y=4
\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y = 4 tìm GTLN của P
Theo BĐT cô-si ta có
\(\sqrt{x-1}=1\cdot\sqrt{x-1}\le\frac{1+x-1}{2}=\frac{x}{2}\)
\(\sqrt{y-2}=1\cdot\sqrt{y-2}\le\frac{1+y-2}{2}=\frac{y-1}{2}\)
\(\Rightarrow\sqrt{x-1}+\sqrt{y-2}\le\frac{x}{2}+\frac{y-1}{2}=\frac{x+y-1}{2}=\frac{3}{2}\)
tìm gtln gtnn của hàm số
\(y=\sqrt{1+x}+\sqrt{1-x}+\dfrac{x^2}{4}\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
toàn 1 lũ hãm điểm
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
1/Tìm GTLN của biểu thức; \(P=x\sqrt{3-x^2}\left(0< x< \sqrt{3}\right)\)
2/ Tìm GTNN của \(P=\left(x^4+1\right)\left(y^4+1\right)\)biết \(x+y=\sqrt{10}\)
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
cho x,y thỏa mãn: \(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\) tìm GTLN, GTNN của P=\(\left(x+y\right)^2-\sqrt{9-x-y}+\frac{1}{\sqrt{x+y}}\)
Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Bài 1 : Tìm GTNN của
P = \(\sqrt{x}+\frac{1}{\sqrt{x}+4}\)
Bài 2 cho x >= 1 , y >=2 . Tìm GTLN của
P = \(\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)