Trong cùng một mặt phẳng tọa độ, cho hai đường thẳng (d) x + 2y = -2 và (d’) 2x - y/2=3 Tìm tọa độ giao điểm của hai đường thẳng (d) và (d’) bằng đồ thị và bằng phép toán.
Giúp với ạ
Trong cùng một mặt phẳng tọa độ cho hai đường thẳng
(d): y=x+1 và (d'): y=x+2y+4 =0
a) Tìm tọa độ giao điểm A của (d) và (d') bằng đồ thị và kiểm tra lại bằng phép toán
b) Tìm a trong hàm số \(y=ax^2\)có đồ thị (P) qua A. Khảo sát tính biến thiên và vẽ đồ thị (P) với a vừa tìm được
c) Tìm phương trình của đường thẳng tiếp xúc với a
Giúp mình với ạ, mình cần gấp. Xin cảm ơn!
a) vẽ đồ thị hàm số : y=2x* (P) và đường thẳng y=x+3 (d) trên cùng mặt phẳng tọa độ.
b) tìm tọa độ giao điểm của hai đồ thị bằng phép toán.
a) tự vẽ
b) Ta có phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d) là:
2x2 = x + 3
<=> 2x2 - x - 3 = 0
Do a - b + c = 2 + 1 - 3 = 0
=> phương trình có 2 nghiệm phân biệt x1 = -1; x2 = 3/2
Với x = -1 => y = -1 + 3 = 2 => tọa độ giao điểm là (-1;2)
x = 3/2 => y = 3/2 + 3 = 9/2 => tọa độ giao điểm là (3/2; 9/2)
Cho 2 hàm số y=x² ; y= -2x+3 có đồ thị lần lượt là Parabol (P) và đường thẳng (D) a) Vẽ (P) và (D) trên cùng mặt phẳng tọa độ b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán
a)
\(\left(P\right):y=x^2\)
Ta có bảng
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 1 | 0 | 1 | 4 |
Vậy đồ thị hàm số \(y=x^2\) là một parabol lần lượt đi qua các điểm
\(\left(-2;4\right),\left(-1;1\right),\left(0;0\right),\left(1;1\right),\left(2;4\right)\)
Bạn tự vẽ nhé
\(\left(d\right):y=-2x+3\)
Cho \(y=0\Rightarrow x=\dfrac{3}{2}\Rightarrow A\left(\dfrac{3}{2};0\right)\in Ox\)
Cho \(x=0\Rightarrow y=3\Rightarrow B\left(0;3\right)\in Oy\)
Vẽ đường thẳng AB ta được đths \(y=-2x+3\)
Bạn tự bổ sung vào hình vẽ nhé
b) Xét PTHĐGĐ của \(\left(P\right),\left(d\right)\) là nghiệm của phương trình
\(x^2=-2x+3\\ \Leftrightarrow x^2+2x-3=0\)
Xét \(a+b+c=1+2-3=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với `x=1 => y=x^2 = 1`
Với `x=2 => y=x^2 = 4`
Vậy tọa độ giao điểm của \(\left(P\right),\left(d\right)\) là 2 điểm \(\left(1;1\right)\) và \(\left(2;4\right)\)
Cho hai đường thẳng (D): y = - x - 4 và (D1) : y = 3x + 2
a) Vẽ đồ thị (D) và (D1) trên cùng 1 mặt phẳng tọa độ Oxy
b) Xác định tọa độ giao điểm A của hai đường thẳng (D) và (D1) bằng phép toán
c) Viết phương trình đường thẳng (D2): y = ax + b (a ≠ 0) song song với đường thẳng (D) và đi qua điểm B(-2;5)
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
Trong cùng một mặt phẳng tọa độ, cho hai đường thẳng (d) x + 2y = -2 và (d’) 2x - 3 2 y Tìm tọa độ giao điểm của hai đường thẳng (d) và (d’) bằng đồ thị và bằng phép toán.
Giúp với ạ
giúp mình giải bài sau với:
Cho hai đường thẳng y = 2x + 2 (d₁) và y = 6 - 2x (d2)
a/ Vẽ (d₁) và (d2) trên cùng một mặt phẳng tọa độ.
b/ Tìm tọa độ giao điểm của (d₁) và (d2) bằng phép tính.
c/ Tìm a,b của đường thẳng (d) y=ax+b biết đường thẳng (d) cắt đường thẳng y = x - 6 tại một điểm trên trục tung và cắt đường cắt đường thẳng y = 2x+1 tại điểm có hoành độ bằng 2.
a:
b: Phương trình hoành độ giao điểm là:
2x+2=6-2x
=>2x+2x=6-2
=>4x=4
=>x=1
Thay x=1 vào y=2x+2, ta được:
\(y=2\cdot1+2=4\)
Vậy: (d1) cắt (d2) tại A(1;4)
c: Thay x=0 vào y=x-6, ta được:
y=0-6=-6
Thay x=0 và y=-6 vào y=ax+b, ta được:
\(a\cdot0+b=-6\)
=>b=-6
=>y=ax-6
Thay x=2 vào y=2x+1, ta được:
\(y=2\cdot2+1=5\)
Thay x=2 và y=5 vào y=ax-6, ta được:
2a-6=5
=>2a=11
=>\(a=\dfrac{11}{2}\)
cho hai đường thẳng y=2x+4 (d) và y= -x+3 (d')
a) vẽ (d) và (d') trên cùng một mặt phẳng tọa độ
b) gọi A là giao điểm (d) và (d'). tìm tọa độ giao điểm A (bằng phép tính)
c) cho hàm số y= (m-2)x+m-3 có đồ thị là (p), với m là là số thực cho trước. tìm các giá trị của m để (p) song song với (d)
Cho hàm số y = -1/2x + 3 có đồ thị (d) và y = x – 6 có đồ thị (d1).
a) Vẽ (d) và (d1) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ giao điểm của (d) và (d1) bằng phép toán.
c) Cho đường thẳng (d2) y = ax + b. Tìm a, b biết (d2) song song với (d) và cắt trục hoành
tại một điểm có hoành độ bằng –3.
c: Vì (d2)//(d) nên \(a=-\dfrac{1}{2}\)
Thay x=-3 và y=0 vào \(y=\dfrac{-1}{2}x+b\), ta được:
\(b+\dfrac{3}{2}=0\)
hay \(b=-\dfrac{3}{2}\)
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2x-1
1) Vẽ đồ thị đường thẳng (d)
2) Viết phương trình đường thẳng (d1) đi qua A(2;1) và song song với đường thẳng (d'): y = -3x+4.
3) Tìm tọa độ giao điểm của hai đường thẳng (d) và (d')