tìm x
\(\left(x-1\right)^{68}=9^{102}\)
1) Tìm x biết :
\(\left|x+2\right|+\left|2x-3\right|=5\)
2) tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-102\right|+\left|2-x\right|\)
ai nhanh mình tíck
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
a)Tìm x,y biết
\(\left(2x-1\right)^{100}+\left(x-y\right)^{102}=0\)
b)Cho x,y thảo mãn
\(\left|x-3\right|+\left(x+y\right)^{2020}=0\)
Tính giastrij của biểu thức \(A=x^2.\left(x+y\right)^{100}\)
a) Ta có : (2x - 1)100 + (x - y)102 = 0
<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)
<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)
<=> \(x=y=\frac{1}{2}\)
b) Ta có: |x - 3| + (x + y)2020 = 0
<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
Với x = 3 và y = -3 thay vào biểu thức A :
A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)
a) Ta có (2x - 1)100 \(\ge\)0 với mọi x
(x - y)102 \(\ge\)0 với mọi x,y
Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y
Và (2x-1)100 + (x-y)102 = 0
<=> 2x - 1 = 0 <=> x = 1/2
và x - y = 0 và y = 1/2
b) Ta có : |x - 3| \(\ge\)0 với mọi x
(x + y)2020\(\ge\)0 với mọi x,y
Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y
Và |x - 3| + (x + y)2020 = 0
<=> x - 3 = 0 <=> x = 3
và x + y = 0 và y = -3
Rồi tự thay vào r tính A đi eiu :)
Tìm x biết :
\(\left|x+2\right|+\left|2x-3\right|=5\)
tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-102\right|+\left|2-x\right|\)
ai nhanh mình tick
Tìm x biết : \(\left|x-2\right|+\left|2x-3\right|=5\)
\(=>\hept{\begin{cases}x=7\\x=4\end{cases}}\)
tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-102\right|+\left|2-x\right|\)
nếu \(\hept{\begin{cases}x-102=0\\2-x=0\end{cases}}\)thì =>\(\hept{\begin{cases}x=102\\2\end{cases}}\)
nếu thấy đúng k nha
a,
\(\dfrac{x^4+x^2+1}{x^2}=\dfrac{x^2+x+1}{x}\)
b,\(3\cdot\left(\dfrac{x+3}{x-2}\right)^2+68\cdot\left(\dfrac{x-3}{x+2}\right)^2-46\cdot\dfrac{x^2-9}{x^2-4}=6\)
a: \(\Leftrightarrow\dfrac{x^4+2x^2+1-x^2}{x^2}=\dfrac{x^2+x+1}{x}\)
\(\Leftrightarrow\dfrac{\left(x^2+1+x\right)\left(x^2+1-x\right)}{x^2}=\dfrac{x^2+x+1}{x}\)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^2}=\dfrac{1}{x}\)
=>x^2=x(x^2-x+1)
=>x(x-x^2+x-1)=0
=>x(-x^2+2x-1)=0
=>x=0(loại) hoặc x=1(nhận)
b: =>3(x+3)^2*(x+2)^2/(x^2-4)^2+68*(x-3)^2*(x-2)^2/(x^2-4)^2-46(x^2-9)(x^2-4)=6(x^2-4)^2
=>3(x^2+5x+6)^2+68(x^2-5x+6)^2-46(x^4-13x^2+36)=6(x^4-8x^2+16)
=>\(x\simeq28,4\)
Tìm x
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-3^3\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9.\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)
\(\Leftrightarrow45x=6\Leftrightarrow x=\frac{2}{15}\)
Vậy: \(S=\left\{\frac{2}{15}\right\}\)
pt <=> \(\left(x-3\right)^3-\left(x^3-27\right)+9\left(x+1\right)^2=15\)
<=> \(x^3-3x^2.3+3x.3^2-27-x^3+27+9x^2+18x+9=15\)
<=> \(45x=6\)
<=> \(x=\frac{6}{45}=\frac{2}{15}\)
Tìm x,y,z ,biết:
\(a,5^{3x+1}=25^{x+2}\)
\(b,\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(c,\left(x-\frac{1}{2}\right)^{100}+\left(y-4\right)^{102}\)
\(đ,\left(\frac{1}{2}x+1\right)^2+\left(\frac{2}{3}y-1\right)^2+|x-y-z|\le0\)
Tìm a,b,c, biết\(ab=2,bc=3,ca=54\)
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
b) \(\left(3x-1\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}=\left(1-3x\right)^{197}\)
\(\Leftrightarrow\left(1-3x\right)^{200}-\left(1-3x\right)^{197}=0\)
\(\Leftrightarrow\left(1-3x\right)^{197}\left[\left(1-3x\right)^3-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}\)
Tìm x,y nguyên biết
a/ |x - 3| + |2y - 6| + 10 = \(\dfrac{30}{\left(y-3\right)^2+3}\)
b/ (2x + 6)2020 + 51 = \(\dfrac{102}{3\left|x+3\right|+2}\)
Tìm Tmin= \(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\)
5 coin cho ng trl đúng
Ta có:\(\left|x-1\right|\ge0;\forall x\)
\(\left|x+2\right|\ge0;\forall x\)
\(\left|x-3\right|\ge0;\forall x\)
\(\left|x+4\right|\ge0;\forall x\) ......
Cộng tất cả ta được:
\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)
\(\Rightarrow Min_T=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)
\(T=\left|9-x\right|+\left|x+8\right|+...+\left|3-x\right|+\left|x+2\right|+\left|x-1\right|\)
\(T\ge\left|9-x+x+8\right|+\left|7-x+x+6\right|+...+\left|3-x+x+2\right|+\left|x-1\right|\)
\(T\ge17+13+9+5+\left|x-1\right|\)
\(T\ge44+\left|x-1\right|\ge44\)
\(T_{min}=44\) khi \(x=1\)