cho tam giác ABC cân tại A. trên cạnh BC lần lượt lấy các điểm M,N ( M nằm giữa B và N) sao cho BM=CN. kẻ MH⊥AB ( H∈ AB)Và NK vuông góc với AC ( K ∈ AC ) chứng minh
a. ΔMHB =ΔNKC
b. AH=AK
C. ΔHMN CÂN Ở A
Cho tam giác ABC cân tại A. Trên cạnh BC lần lượt lây các điểm M,N (M nằm giữa B và N) sao cho BM = CN. Kẻ M H ⊥ A B ( H ∈ A B ) và N K ⊥ A C ( K ∈ A C ) . Chứng minh:
a) ∆ M H B = ∆ N K C ;
b) AH = AK;
c) ∆ A M N cân ở A.
cho tam giác ABC cân tại A. Trên cạnh BC lần lượt là BC lần lượt lấy các điểm M và N ( M nằm giữa B và N ) sao cho BM = CN. Kẻ MH vuông góc với AB; NK vuông góc với AC. Chứng minh:
a) Tam giác MHB = tam giác NKC
b) AH = AK
c) tam giác AMN cân tại A
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN
Cho tam giác ABC cân tại A trên cạnh Bc lần lượt lấy các điểm M,N. M nằm giữa B và N sao cho BM=CN. Kẻ MH vuông góc với AB tại H, Nk vuông góc với Ac tại k . cmr
a) tam giác MHB= tam giác NKC
b) AH=AK
c)Tam giác AMN là tam giác cân
a)a)
Xét hai tam giác vuông ΔMHB và ΔNKC có:
BM=CN(gt)
ˆHBM=ˆKCN
Vậy ΔMHBΔ == ΔNKC (cạnh huyền - góc nhọn)
b)
Từ câu a), ta có: BH=CK mà AB=AC⇒AH=AK
c)
Ta có MH=MK⇒ΔAHM=ΔAKN(c−g−c)⇒AM=AN hay ΔAMN cân
a)Xét hai tam giác vuông ΔMHB và ΔNKC có
:BM=CN(gt)ˆHBM=ˆKCNVậy ΔMHB=ΔNKC (cạnh huyền - góc nhọn)
b)Từ câu a), ta có: BH=CK mà AB=AC⇒AH=AK
c)Ta có
MH=MK⇒ΔAHM=ΔAKN(c−g−c)⇒AM=AN hay ΔAMN cân
cho tam giác ABC cân tại A.Trên cạnh BC lần lượt lấy các điểm M,N (M nằm giữa B và N) sao cho BM bằng CN. kẻ MH vuông góc AB (H thuộc AB) và NK vuông góc AC (K thuộc AC). chứng minh
a) tam giác MHB=tam giác NKC b)AH=AK c)tam giác AMN cân ở A
mình không biết vẽ tam giác nhé nên mình viết chữ
cho tam giác ABC cân tại ,trên cạnh BC lấy M và N sao cho BM=CN
a) Chứng minh tam giác AMN cân
b) Vẽ MH vuông góc AB, Nk vuông góc AC. Chứng mịnh MH=AK,AH=AK
c) Gọi O là giao điểm của MH và NK, Tam giác OMN là tam giác gì?
XET TAM GIAC AMB VA TAM GIAC ANC CO
AB=AC(GT)
BM=CN(GT)
GOCS MBA=GOC NCA
=>TM GIACS AMB = TAM GIAC AMN
=> AM=AN(dpcm)
=>tam giác amn can tai A
cho tam giác ABC cân ở A . trên cạnh BC lấy M,N sao cho BM=CN ( M nằm giữa Bvà N
a) chứng minh tam giác AMN cân
b) gọi D là trung điểm của MN chứng minh AD là phân giác của góc BAC
c) Kẻ MH vuông góc với AB , NK vuông góc với AC chứng minh MH = NK
d) chứng minh MH ,AD , NK đồng quy
Cho tam gíac ABC cân tại A. Lấy M và N trùng nhau n.g B và C thỏa mãn: BM= CN. Kẻ MH vuông góc AB, NK vuông góc AC ( H thuộc AB, K thuộc AC)
a. tam giác AMN cân và MH= NK
b. Gọi O là giao điểm BK và CH. Chứng minh Ao là phân giác gosb BAC
c. Chứng minh HK song song BC
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC và H là trung điểm của BC.
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc với AC.
. + vì tam giác ABC là tam giác cân
=> AB=AC ( hai cạnh bên bằng nhau)
Lại có: vì góc AHC bằng 90o (gt) (1)
Mà: AHB+ AHC= 180o ( hai góc kề bù)
Từ (1) và (2) ta suy ra:
AHB= 90o và tam giác AHB là tam giác vuông
a) xét tam giác vuông ABH và tam giác ACH:
AB= AC ( cmt)
Và AHB= AHC= 90o ( cmt)
=> tam giác ABH= tam giác ACH( ch-gv)
Do đó: BH = CH ( hai cạnh tương ứng)
Vậy: H là trung điểm của BC ( đpcm)
( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘
CHÚC BẠN HỌC TỐT NHA!
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(AB=AC\)\((\Delta ABC\)cân \()\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của BC
b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :
\(BM=CN\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )
mà \(\widehat{BMH}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{CNH}=90^o\)
\(\Rightarrow HN\perp AC\)
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN