Để đa thức \(x^2-\left(m+1\right)x+4\)nhận x-1 là một nhân tử thì m=
1.để đa thức x2-(m+1)x+4 nhận x-1 là 1 nhân tử thì m=?
2. de da thuc 3x4+(2m-13)x3-4(7-m)x+3m-9 chia het cho x-1 thi m=?
3.cho A=-2x2+7x-6.A dat gia tri lon nhat tai x=?
4.để đa thức x2-(m+1)x+4 nhận x-1 là một nhân tử thi m=?
để đa thức x^2-(m+1)x+4 nhận x-1 là 1 nhân tử thì m = ?
Để đa thức x2 - (m+1)x +4 nhận x-1 là 1 nhân tử thì m = ?
1.để đa thức x2-(m+1)x+4 nhận x-1 là 1 nhân tử thì m=?
2. de da thuc 3x4+(2m-13)x3-4(7-m)x+3m-9 chia het cho x-1 thi m=?
3.cho A=-2x2+7x-6.A dat gia tri lon nhat tai x=?
1.để đa thức x2-(m+1)x+4 nhận x-1 là 1 nhân tử thì m=?
2. de da thuc 3x4+(2m-13)x3-4(7-m)x+3m-9 chia het cho x-1 thi m=?
3.cho A=-2x2+7x-6.A dat gia tri lon nhat tai x=?
Bài 10. Tìm m, n để đa thức \(f_{\left(x\right)}=\left(2m-n+1\right)x^2+m-3n+2\) là một đa thức không ?
- Để đa thức f(x) trên là một đa thức không thì :
\(\left\{{}\begin{matrix}2m-n+1=0\\m-3n+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\m-3n=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=-\dfrac{1}{5}\\n=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
Phân tích đa thức thành nhân tử
\(2x\left(y-1\right)-z\left(1-y\right)\)
\(a\left(x-y\right)-b\left(x+y\right)+x-y\)
\(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)
\(a^m-a^{m+2}\)
a: \(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)
\(=a\left(x-y\right)+b\left(x-y\right)+c\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b+c\right)\)
b: \(a^m-a^{m+2}\)
\(=a^m-a^m\cdot a^2\)
\(=a^m\left(1-a^2\right)\)
\(=a^m\left(1-a\right)\left(1+a\right)\)
1)Rút gọn biểu thức:B=\(\left(x-\dfrac{x}{x+1}\right)\)-\(\left(1-\dfrac{x}{x+1}\right)\)
2)Phân tích đa thức thành nhân tử: (x-1)2-25
3)Cho đường thẳng (d)có phương trình: y=2x+2m-2. Tìm m để đường thẳng (d) đi qua điểm A(-2;2), khi đó hãy vẽ đường thẳng (d)trong mặt phẳng tọa độ Oxy.
`B=(x-x/(x+1))-(1-x/(x+1))`
`đkxđ:x ne +-1`
`=((x^2+x-x)/(x+1))-(x+1-x)/(x+1)`
`=x^2/(x+1)-1/(x+1)`
`=(x^2-1)/(x+1)`
`=((x-1)(x+1))/(x+1)`
`=x-1`
`2)(x-1)^2-25`
`=(x-1)^2-5^2`
`=(x-1-5)(x-1+5)`
`=(x-6)(x+4)`
Bài 1:
Ta có: \(B=\left(x-\dfrac{x}{x+1}\right)-\left(1-\dfrac{x}{x+1}\right)\)
\(=\left(\dfrac{x\left(x+1\right)-x}{x+1}\right)-\left(\dfrac{x+1-x}{x+1}\right)\)
\(=\dfrac{x^2+x-x-\left(x+1-x\right)}{x+1}\)
\(=\dfrac{x^2-1}{x+1}=x-1\)
Bài 2:
Ta có: \(\left(x-1\right)^2-25\)
\(=\left(x-1-5\right)\left(x-1+5\right)\)
\(=\left(x-6\right)\left(x+4\right)\)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)