Tìm số nguyên a để phân số sau cũng là số nguyên:
\(\frac{3a+45}{a+9}\)
Tìm số nguyên a để phân số sau cũng là số nguyên:
\(\frac{3a-33}{a-8}\)
số a phải bằng 9 vì nếu là số nguyên thì mẫu phải bằng 1 ta lấy 8+1 =9
Tìm số nguyên a để phân số sau cũng là số nguyên:
\(\frac{7a-2}{a-3}\)
\(A=\frac{7a-2}{a-3}=\frac{7\left(a-3\right)+19}{a-3}=7+\frac{19}{a-3}\)
Để A nguyên thì \(\frac{19}{a-3}\) nguyên
Khi \(a-3\in\left\{1;19;-1;-19\right\}\)
\(\Leftrightarrow a\in\left\{4;22;2;-16\right\}\)
Vậy
Tìm số nguyên a để phân số sau cũng là số nguyên: \(\frac{-19}{a+8}\)
Để phân số trên là số nguyên thì -19 phải chia hết cho a+8
=>a+8\(\in\)Ư(-19)
=>a+8\(\in\){1; -1; 19; -19}
a+8 | a |
1 | -7 |
-1 | -9 |
19 | 11 |
-19 | -27 |
KL:a\(\in\){-7; -9; 11; -27}
để \(\frac{-19}{a+8}\)là số nguyên thì:
a+8\(\in\)Ư(-19)={-1;1;-19;19}
với a+8=-1
a=-9
với a+8=1
a=-7
với a+8=19
a=11
với a+8=-19
a=-27
vậy a={-9;-7;11;-27} thì \(\frac{-19}{a+8}\)là số nguyên
tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
Đặt \(D=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(=\frac{2a+9+5a+17-3a}{a+3}\)
\(=\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
\(\Rightarrow14⋮a+3\)
\(\Rightarrow a+3\inƯ\left(14\right)\)
Đến đây làm nốt
Đặt \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)
\(\Rightarrow A=\frac{\left(2a+9\right)+\left(5a+17\right)-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)
\(=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
Vì \(4\inℤ\)\(\Rightarrow\)Để A nguyên thì \(14⋮\left(a+3\right)\)\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
Vậy \(a\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)để a là số nguyên
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{4a+26}{a+3}\)
Để Phân số trên nguyên
=> 4a + 26 chia hết cho a + 3
=> 4a + 12 + 14 chia hết cho a + 3
Vì 4a + 12 chia hết cho a + 3
=> 14 chia hết cho a + 3
=> a + 3 thuộc Ư(14)
=> a + 3 thuộc {1; -1; 2; -2; 7; -7; 14; -14}
=> a thuộc {-2; -4; -1; -5; 4; -11; 11; -17}
Tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}=\frac{4a+12+14}{a+3}\)
\(=\frac{4a+12}{a+3}+\frac{14}{a+3}=\frac{4\left(a+3\right)}{a+3}+\frac{14}{a+3}=4+\frac{14}{a+3}\in Z\)
\(\Rightarrow\frac{14}{a+3}\in Z\Rightarrow\)14 chia hết cho a+3
=>a+3=-14;-7;-2;-1;1;2;7;14
=>a=-17;-10;-5;-4;-2;-1;4;11
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}\)
=> 4a+26 chia het cho a+3
=> 4a+12+14 chia het cho a+3
=> 4(a+3) +14 chia het cho a+3
=> 14 chia het cho a+3
=> a+3= -1;1;-2;2;-7;7;-14;14
=> a= -4;-2;-5;-1;-10;4;-17;11
Ta có: \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a-26}{a+3}\)
Để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì (4a-26) chia hết cho a+3
nên 4a+12-40 chia hết cho a+3
hay 4(a+3)-40 chia hết cho a+3
Vì a+3 chia hết cho a+3 nên 4(a+3) chia hết cho a+3 mà 4(a+3)-40 chia hết cho a+3
nên 40 chia hết cho a+3 hay a+3 E Ư(40)={1;2;4;5;8;10;20;40}
nên aE{-2;-1;1;2;5;7;17;37}
Vậy để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên thì aE{-2;-1;1;2;5;7;17;37}
Tìm số nguyên a để phân số sau cũng là số nguyên:
3a - 20 |
a - 1 |
Đáp số a ∈ { }
mình đang cần gấp ,làm ơn.
Xin cảm ơn!
tìm số nguyên để
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
Tìm số nguyên a để \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên