\(\frac{x+y}{11}\) = \(\frac{x-y}{3}\) = \(\frac{xy}{36}\) ( x≠0 , y≠0 )
Cho x, y khác 0 thỏa mãn \(xy\left(x+y\right)=x^2-xy+y^2\). Tìm GTLN của \(A=\frac{4}{x^3}+\frac{11}{y^3}\)
cho x+y=0 và xy khác 0
CMR: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^3y^3+3}=0\)
\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}+4=0\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}-4=0\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=-4\\x\left(y+\frac{1}{y}\right)+\frac{1}{x}\left(y+\frac{1}{y}\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=-4\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-4\\ab=4\end{matrix}\right.\)
Theo Viet đảo, a và b là nghiệm:
\(t^2+4t+4=0\Rightarrow t=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x+\frac{1}{x}=-2\\y+\frac{1}{y}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Tìm đk x,y để A>0: A=\(\left(\frac{x^2-xy}{y^2+xy}+\frac{x^2+y^2}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x-y}\right)\)
cho x+y+z <>0 thỏa mãn xyz=12 và x\(^3\)+y\(^3\)+z\(^3\)=36 tính giá trị biểu thức \(\frac{x+y}{xy}.\frac{z+y}{yz}+\frac{x+z}{xz}\)
\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)
Thay x=y=z vào r tính thôi bạn
cho xy khác 0 và x+y =1
chứng minh rằng: \(\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)
\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)
\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)
từ đó ta có đpcm
cho A=\(\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
a) tìm TXĐ của A
b) tìm x,y để A>1 và y<0
TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)
Câu b :
\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)
Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)
Giải hệ phương trình: \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}+4=0\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}-4=0\end{cases}}\)
ĐKXĐ: ...
\(\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=-4\\x\left(y+\frac{1}{y}\right)+\frac{1}{x}\left(y+\frac{1}{y}\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=-4\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=4\end{matrix}\right.\)
Theo Viet đảo, \(x+\frac{1}{x}\) và \(y+\frac{1}{y}\) là nghiệm của:
\(t^2+4t+4=0\Rightarrow t=-2\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-2\\y+\frac{1}{y}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x+1=0\\y^2+2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)