\(\frac{4x}{5}+\frac{5\left(255-x\right)}{4}=255\)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a) \(5x+3\left(2-4x\right)\ge2\left(3x+5\right)-3x\)
b)\(-2x+\frac{5x-3}{4}\le\frac{7x+8}{5}\)
c) \(\frac{-5x-7}{3}+\frac{4x}{5}\ge\frac{3x}{2}-\frac{2x-5}{6}\)
d) \(\frac{3+4x}{5}-\frac{2\left(x+5\right)}{6}\)˃\(\frac{3\left(2x+7\right)}{2}-\frac{x-13}{8}\)
Tìm x:
a) (3x-0.5)(2x+2.5)=0
b) 3\(\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+18\)
c) 2x-\(3\frac{1}{4}-2\frac{5}{6}=x-\frac{1}{2}\)
a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)
so sánh \(\left(\frac{-1}{5}\right)^{255}và\left(\frac{-1}{2}\right)^{579}\)
\(\hept{\begin{cases}\\\end{cases}\varphi\Delta\xi\subseteq\sinh\tanh_{ }_{ }\overline{ }^{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt[]{}\sqrt[]{}\sqrt{ }}\)
Gỉa sử x,y,z là 3 số thực dương thỏa mãn điều kiện x+y+z=xyz.Chứng minh rằng
\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)
\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)
\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)
\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)
\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)
Tính tích rồi tìm bậc của tích vừa tìm được\(-\frac{a+1}{5}\left(x^2y^4t^2\right)^3và\left(\frac{1}{2b}x^3y\right)^2\)
\(\frac{3.x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
Bài này chắc giải phương trình . Lần sau nếu bn muôn hỏi bài nào thì ghi rõ tên đề bài nhé, chứ như thế này ko biết đề bài như thế nào đâu .Đây mik làm đại nhé.
\(\frac{3x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
\(\Leftrightarrow3x^5-x\left(3x^4+7\right)=2x-5\)
\(\Leftrightarrow3x^5-3x^5-7x=2x-5\)
\(\Leftrightarrow-7x-2x=-5\)
\(\Leftrightarrow-9x=-5\Leftrightarrow x=\frac{5}{9}\)
Rút gọn biểu thức A
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)Với \(x>0;x\ne4\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right).\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(A=\left[\frac{2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right]\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{5\sqrt{x}\left(2\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
Tìm x để:
Biểu thức sau đây nhận giá trị dương:
a)\(\left(-2\frac{2}{5}x+1\right)\left(x-2006\right)\)
b)\(\frac{x-2}{x+5}\)
Biểu thức sau đây nhận giá trị âm:
a)\(\left(2x-5\right)\left(3x-\frac{5}{3}\right)\)
b)\(x^2+2006x\)
Help me!
a) Để \(\left(-2\frac{2}{5}x+1\right).\left(x-2006\right)\) nhận giá trị dương thì \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu
=> \(\left[ \begin{array}{l} \left \{ {{-2\frac{2}{5}.x+1<0 } \atop {x-2006<0}} \right. \\\left \{ { { -2\frac{2}{5}.x+1>0 } \atop {x-2006>0}} \right.\end{array} \right.\) =>\(\left[ \begin{array}{l} \left \{ {{-2\frac{2}{5}.x<-1 } \atop {x<2006}} \right. \\\left \{ { { -2\frac{2}{5}.x>-1 } \atop {x>2006}} \right.\end{array} \right.\)=>\(\left[ \begin{array}{l} \left \{ {{x<\frac{5}{2} } \atop {x<2006}} \right. \\\left \{ { { x>\frac{5}{2} } \atop {x>2006}} \right.\end{array} \right.\)\(\Rightarrow\orbr{\begin{cases}x< \frac{-2}{5}\\x>2006\end{cases}}\)
Mình làm lại phần a , mình đánh mã TeX nhưng nó không ra ạ :
Để \(\left(-2\frac{2}{5}x+1\right).\left(x-2006\right)\) nhận giá trị dương thì \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu
+) \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu âm
\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x+1< 0\\x-2006< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x< -1\\x< 2006\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{5}{2}\\x< 2006\end{cases}}\)\(\Rightarrow x< \frac{5}{2}\)
+) \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu dương
\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x+1>0\\x-2006>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x>-1\\x>2006\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{5}{2}\\x>2006\end{cases}}\)=> x > 2006
b) Để \(\frac{x-2}{x+5}\)nhận giá trị dương thì x - 2 và x + 5 cùng dấu
+) x - 2 và x + 5 cùng dấu dương
\(\Rightarrow\orbr{\begin{cases}x-2>0\\x+5>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>2\\x>-5\end{cases}}\)=> x > 2
+) x - 2 và x + 5 cùng dấu âm
\(\Rightarrow\orbr{\begin{cases}x-2< 0\\x+5< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 2\\x< -5\end{cases}}\)=> x < -5
So sánh:
\(\left(-\frac{1}{5}\right)^{255}v\text{à}\left(-\frac{1}{2}\right)^{579}\)