Cho tam giác ABC có góc B > góc C. Tia phân giác của góc A cat BC tại D. Chứng minh BD<DC .
( Cái này là trong bài Quan hệ giữa góc và cạnh đối diện trong 1 tam giác )
cho tam giác ABC có góc A =90 độ; BC=2AB; E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a/chứng minh DB là tia phân giác của góc ADE
b/ chứng minh BD=DC
c/tính góc C, góc B của tam giác ABC
Cho tam giác aBC vuông tại A , Có góc C =30' . tia phân giác của góc B cắt tại AC tại D . Vẽ DE vuông góc với BC tại E . Qua điểm C vẽ đường thẳng vuông góc với tia BD tại H .
a. Chứng minh : tam giác ABD= tam giác EBD
b. Tính góc DBC và chứng minh : DB=DC
c. So Sánh : HC và HD
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: \(\widehat{DBC}=\dfrac{60^0}{2}=30^0\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm
a. Tính độ dài BC
b. So sánh các góc của tam giác ABC
c. Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DB vuông góc với BC tại E. Chứng minh tam giác ABD = tam giác EBD
d. Trên tia đối của tia AB, lấy điểm K sao cho AK = EC
Chứng minh góc BKC bằng góc BCK
e. Tia BD cắt KC tại I. Chứng minh IA = IE.
cho tam giác ABC vuông tại A tia phân giác của góc B cat AC tại D, cho E thuộc BC sao cho BE=BA
a)chứng minh AD=DE
b) cho ED giao BA tại I chứng minh tam giác DIC cân
c) chứng minh cho BD vuông góc với CI
a,xét t.giác ABD và t.giác EBD có:
AB=EB(gt)
\(\widehat{ABD}\)=\(\widehat{EBD}\)(gt)
BD cạnh chung
=>t.giác ABD=t.giác EBD(c.g.c)
=> AD=DE(2 cạnh tương ứng)
b,vì t.giác ABD=t.giác EBD=>\(\widehat{DAB}\)=\(\widehat{DEB}\)mà \(\widehat{DAB}\)=90 độ
=>\(\widehat{DEB}\)=90 độ
xét 2 t.giác vuông IAD và CED có:
AD=DE(theo câu a)
\(\widehat{ADI}\)=\(\widehat{EDC}\)(vì đối đỉnh)
=> t.giác IAD=t.giác CED(cạnh góc vuông-góc nhọn kề)
=>DI=DC(2 cạnh tương ứng)
=>t.giác DIC cân
c,gọi O là giao điểm của CI và BD
xét t.giác OBC và t.giác OBI có:
BO cạnh chung
\(\widehat{OBI}\)=\(\widehat{OBC}\)(gt)
vì AB=EB mà AI=EC nên IB=CB
=>t.giác OBC=t.giác OBI(c.g.c)
=>\(\widehat{BOC}\)=\(\widehat{BOI}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{BOC}\)=\(\widehat{BOI}\)=90 độ
=> BD vuông góc với CI
hình vẽ của mik vẽ thiếu,bn tự vẽ lại nha
cho tam giác ABC vuông tại A . vẽ tia phân giác BD của góc ABC (D thuộc AC).Trên BC lấy E sao cho AB = EB.a, CMR tam giác ABD=tam giácEBD và ED vuông góc với BC
b,kẻ tia phân giác CM của góc ACB (m thuộc AB) cắt BD tại I .tinh goc BIC
c,tren BC lay N sao cho AC=NC AN cat BD tai o. Chứng minh tam giác AOE là tam giác vuông
cho tam giác ABC có góc A 90 độ BC 2AB E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.a chứng minh DB là tia phân giác của góc ADEb chứng minh BD DCc tính góc C, góc B của tam giác ABC
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
Cho tam giác ABC có góc B = góc C . Tia phân giác của góc A cắt BC tại D. Chứng minh rằng BD=DC;AB=AC
cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được
Xét tam giác ABD và tam giác ACD ta có:
Góc BAD = góc CAD (t/chất tia phân giác)
AD cạnh chung
Góc B = góc C (gt)
=> Tam giác ABD = tam giác ACD (g.c.g)
=> BD = DC (2 cạnh tương ứng)
AB = AC (2 cạnh tương ứng)
Mấy bài này cũng dễ mà, tự động não k đc à?
THANH NGUYEN làm sai rồi bạn ơi
VÌ cạnh có xen giữa 2 góc đâu
Cho tam giác ABC vuông tại A có góc 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a)Chứng minh ∆ABD=∆AEBD b) Chứng minh tam giác ABE là tam giác đều c) Chứng minh BD=DC GIÚP TỚ VỚI Ạ !
a: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: ta có: ΔABD=ΔEBD
nên BA=BE
=>ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
Cho tam giác ABC vuông tại A có góc C bằng 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a) Chứng minh ∆ABD=∆EBD b)Chứng minh tam giác ABE là tam giác đều. c)Chứng minh BD=DC GIÚP MÌNH VỚI Ạ
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )