Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mai anh
Xem chi tiết
Bùi Việt Anh
22 tháng 4 2020 lúc 15:40

 a,

góc QPN=góc QMN=80

góc PNM=góc PQM=100

Giải thích các bước giải:

 a. Gọi  E là giao của AC và BD

ABCD là hình thang cân -> AC=BD

Xét ΔDQP và  ΔCNP có

DQ=CN=(AC2AC2 = BD2BD2 )

góc QDP = góc NCP

DP=CP

-> ΔDQP =  ΔCNP (c.g.c)

-> góc DPQ=góc CPN

Xét ΔDEP và  ΔCEP có

DE=CE

cạnh EP chung

DP=CP

-> ΔDEP = ΔCEP (c.c.c)

-> góc DPE=góc CPE=90

<-> góc DPQ + góc QPE= góc CPN+góc NPE
-> góc QPE = góc NPE
-> PM là tia phân giác của góc QMN

b. Vì Q,P là trung điểm DB,DC

-> QP là đường trung bình -> QP=BC2BC2, QP//BC

CM tương tự MN=BC2BC2

PN=AD2AD2

QM=AD2AD2

Mà AD=BC

-> QP=MN=PN=QM

-> QPNM là hình thoi

Vì QP//BC -> góc DPQ=góc DCB=50

góc QPM=góc DPM-góc DPQ=90-50=40

góc QPN=2.góc QPM=2.40=80

góc PNM=180-góc QPN=100

góc QPN=góc QMN=80

góc PNM=góc PQM=100

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
22 tháng 4 2020 lúc 17:14

A M B Q N P D C

a.Vì M, N , P, Q là trung điểm AB, AC, DC, DB

=> MN,NP,PQ,QM là đường trung bình ΔABC,ACD,DBC,ABD

\(\Rightarrow MQ=PN=\frac{1}{2}AD,MN=PQ=\frac{1}{2}BC\)

Mà AD = BC => MN = NP = QM => MNPQ là hình thoi

=> PM là tia phân giác ^QPN

b ) Vì PN // AD => \(\widehat{NPC}=\widehat{ADC}=50^0\)

\(\Rightarrow\widehat{MPQ}=\widehat{MPN}=90^0-50^0=40^0\Rightarrow\widehat{NPQ}=80^0\)

Vì ABCD là hình thang cân , M, N là trung điểm AB ,CD

=> \(MP\perp DC,AB\)

Do MNPQ là hình thoi

\(\Rightarrow\widehat{QMN}=\widehat{QPN}=80^0\Rightarrow\widehat{MQP}=\widehat{MNP}=180^0-80^0=100^0\)

Khách vãng lai đã xóa
Cao Thanh Nga
Xem chi tiết
Yohan
Xem chi tiết
Phạm Thu Hà
Xem chi tiết
Như Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2022 lúc 15:45

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

Phương Nguyễn
Xem chi tiết
nguyễn thị kim oanh
10 tháng 2 2016 lúc 0:03

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

OoO Kún Chảnh OoO
10 tháng 2 2016 lúc 6:34

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

ST
10 tháng 2 2016 lúc 6:43

Do AI, DI lần lượt là phân giác BADˆ;ADCˆ→IADˆ=BADˆ2 và IDAˆ=ADCˆ2

Ta có AIDˆ=180o−(IADˆ+IDAˆ)=180oBADˆ+ADCˆ2=180o−180o2=90o

Xét Δ AID vuông tại I có IM là trung tuyến thuộc cạnh huyền AD  MA=MI 

=> Δ AMI cân tại M => MAIˆ=MIAˆ

Do MAIˆ=BAIˆ→BAIˆ=MIAˆ

Mà 2 góc ở vị trí so le trong  MI // AB (1)

Tương tự có NJ // AB (2) 

Lại có MN // AB (3) ( MN là đường trung bình của hình thang ABCD ) 

Từ (1); (2) và (3)=>  M, N, I, J thẳng hàng.

Jin Tiyeon
Xem chi tiết
NGuyễn Lộc Vương
Xem chi tiết

B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :

Ta có : MHK = NKH = 90 độ

=> MH // NK

=> Tứ giác MNKH là hình thang

Mà MHK = NKH = 90 độ

=> Tứ giác MNKH là hình thang cân

=> HMN = MNK = 90 độ

=> MNK = NKH = 90 độ

=> MN // HK 

=> MN// QP

=> MNPQ là hình thang

Mà QMN = MNP (gt)

=> MNPQ là hình thang cân(dpcm)

Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé

Nguyễn Linh Chi
22 tháng 6 2019 lúc 15:05


A B C D M I 1 2 1 2 1 2

Gọi M là giao điểm DI và AB

Ta có: AM//DC 

=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1) 

Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)

=> \(\widehat{M}=\widehat{D_1}\)

=> Tam giác ADM cân 

=> ID=IM (2) 

Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)

Từ (1) , (2) => Tam giác IBM = tam giác ICD

=> BM=DC

Do  vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)

Nguyễn Linh Anh
Xem chi tiết
naruto
30 tháng 8 2015 lúc 9:03

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

Rộp Rộp Rộp
28 tháng 7 2018 lúc 7:56

#naruto Có ai hỏi bạn đâu mà trả lời

☆™๖ۣۜAηɗɾεω༉☆
28 tháng 7 2018 lúc 8:12

Vậy Rộp Rộp Rộp, các bạn khác đang hỏi, bạn không trả lời mà đăng như thế lên làm gì ?