Giải phương trình:
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
Giải phương trình:
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
\(ĐKXĐ:x\ne\frac{3}{2}\)
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+2x+7=x^2+10\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\left(KTMĐKXĐ\right)\)
Vậy phương trình vô nghiệm
ĐKXĐ: x khác 3/2
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
<=> \(\frac{x^2+4x+4}{2x-3}-1=\frac{x^2+10}{2x-3}\)
<=> x^2 + 4x + 4 - 2x + 3 = x^2 + 10
<=> x^2 + 4x + 4 - 2x + 3 - x^2 - 10 = 0
<=> 2x - 3 = 0
<=> 2x = 0 + 3
<=> 2x = 3
<=> x = 3 (ktmdk)
=> pt no
Giải các phương trình
a. \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
b. \(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c. \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
d.\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)
\(=>\frac{2}{x+1}=\frac{1}{x+1}\)
\(=>2x+2=x+1\)
\(=>2x-x=1-2=-1\)
\(=>x=-1\)
vậy nghiệm của phương trình trên là {-1}
À quên ĐKXĐ của câu a là \(x\ne-1\)
Nên \(x\in\varnothing\)nhé :v
\(\left(2x^2+1\right)\left(4x-2\right)=\left(2x^2+1\right)\left(x-12\right)\)
\(\Leftrightarrow8x^3-6x^2+4x-3=2x^3-24x^2+x-12\)
\(\Leftrightarrow8x^3-6x^2+4x-3-2x^3+24x^4-x+12=0\)
\(\Leftrightarrow6x^3+18x^2+3x+9=0\)
\(\Leftrightarrow3\left(x+3\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Giải các phương trình sau :
\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(b,\frac{2\left(x-4\right)}{4}-\frac{3+2x}{10}=x+\frac{1-x}{5}\)
\(c,\frac{2x}{3}+\frac{3x-5}{4}=\frac{3\left(2x-1\right)}{2}-\frac{7}{6}\)
\(d,\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
\(e,\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19
Giải phương trình: \(\frac{1}{\left(x^2+2x+2\right)^2}+\frac{1}{\left(x^2+2x+3\right)^3}=\frac{5}{4}\)
giải phương trình
\(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
Quy đồng mẫu chung :
\(\frac{2.\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(4x^2-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Sau đó ta khử mẫu:
\(\Rightarrow\)\(2x^2+2x+2+2x^2+x-3=4x^2-1\)
\(\Rightarrow\)\(2x^2+2x+2x^2+x-4x^2=-1-2+3\)
\(\Rightarrow\)\(3x=0\)
\(\Rightarrow\)\(x=0\)
Vậy bạn tự kết luận
ĐKXĐ: \(x\ne1\)
\(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Leftrightarrow\)\(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4x^2-1}{x^3-1}\)
\(\Leftrightarrow\)\(\frac{2x^2+2x+2}{x^3-1}+\frac{2x^2+x-3}{x^3-1}=\frac{4x^2-1}{x^3-1}\)
\(\Rightarrow\)\(2x^2+2x+2+2x^2+x-3=4x^2-1\)
\(\Leftrightarrow\)\(4x^2+3x-1=4x^2-1\)
\(\Leftrightarrow\)\(3x=0\)
\(\Leftrightarrow\)\(x=0\) (thỏa mãn)
Vậy....
\(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x+3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\)\(\frac{4x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow2x^2+2x+2+2x^2-2x+3x-3\)\(=4x^2-1\)
\(\Leftrightarrow2x^2+2x^2-4x^2+2x-2x+3x=-1-2+3\)
\(\Leftrightarrow3x=0\)
\(\Leftrightarrow x=0\left(nhận\right)\)
Vậy S= {0}
Giải các bất phương trình sau
a)\(\frac{x+3}{6}+\frac{x-2}{10}>\frac{x+1}{5}\)
b)\(\left(x+1\right)\left(2x-2\right)-3< -5x-\left(2x+1\right)\left(3-x\right)\)
<3
a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)
<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)
<=>5(x+3)+3(x-2)>6(x+1)
<=>5x+15+3x-6>6x+6
<=>8x-6x >6-15+6
<=>2x >-3
<=>x >-1,5
Vậy tập nghiệm của bất phương trình là {x/x>-1,5}
b)(x+1)(2x-2)-3<-5x-(2x+1)(3-x)
<=> 2x\(^2\)-2x+2x-2-3<-5x-6x+2x\(^2\)-3+x
<=>2x\(^2\)-2x\(^2\)+5x+6x-x<2+3-3
<=>10x <2
<=>x <\(\frac{1}{5}\)
Vậy tập nghiệm của bất phương trình là {x/x<\(\frac{1}{5}\)}
Giải phương trình
2.
a. \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
c. \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{4-2x}{3}}{5}\)
a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)
\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)
\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)
\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
GIẢI PHƯƠNG TRÌNH\(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x+3\right)}=0\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2.2x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x}{2\left(x-3\right)\left(x+1\right)}+\frac{x^2-3x}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
=>\(2x^2-6x=0\)
\(2x\left(x-3\right)=0\)
=>\(x=0\)
\(x=3\)
Giải phương trình
\(\frac{1}{2}\left(\frac{2x-2}{2009}+\frac{2x}{2010}+\frac{2x+2}{2011}\right)=\frac{33}{10}-\left(\frac{x+1}{2011}+\frac{x-1}{2009}+\frac{x}{2010}\right)\)