tìm gtnn của biểu thức: A=|2x-2014|+|2x-1|
tính gtnn của biểu thức: A=|2x-2014|+|2x-1|
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
(Quảng Ngãi)
Tìm GTNN của biểu thức \(P=\frac{x^2-2x+2014}{x^2}\).
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
1. a) Ta có:
|x-3| > 0
=> |x-3| + 2 > 2
=> (|x-3| + 2)2 > 22 = 4
|y+3| > 0
=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011
=> GTNN của P là 2011
<=> x-3 = y+3 = 0
<=> x = 3; y = -3.
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
với x≠ -1 , tìm GTNN của biểu thức A= \(\frac{x^2-2x+2014}{\left(x+1\right)^2}\)
Vì \(A=\frac{x^2-2x+2014}{\left(x+1\right)^2}\)
\(\Rightarrow x^2-2x+2014=A\left(x+1\right)^2\)
\(\Leftrightarrow x^2-2x+2014=Ax^2+2Ax+A\)
\(\Leftrightarrow\left(1-A\right)x^2-2\left(A+1\right)x+\left(2014-A\right)=0\)
\(\Delta=4\left(A+1\right)^2-4\left(1-A\right)\left(2014-A\right)\)
\(=8068A-8052\)
Vì A có GTNN nên phương trình có nghiệm
\(\Leftrightarrow8068A-8052\ge0\Leftrightarrow A\ge\frac{2013}{2017}\)
Dấu "=" khi \(x=\frac{2015}{2}\)
Tìm GTNN của biểu thức A=x2-2x+2014/x2
A=\(1-\frac{2}{x}+\frac{2014}{x^2}=1-\frac{2.\sqrt{2014}}{x}.\frac{1}{\sqrt{2014}}+\left(\frac{\sqrt{2014}}{x}\right)^2=\left(\frac{\sqrt{2014}}{x}\right)^2-\frac{2}{x}+\frac{1}{2014}+\frac{2013}{2014}=\left(\frac{\sqrt{2014}}{x}-\frac{1}{\sqrt{2014}}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)
Vậy Min A là 2013/2014 với x=2014
Tìm gtnn của biểu thức A=2x2+ 2x+1
\(A=2x^2+2x+1=x^2+x^2+x+x+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\)
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\)nên \(Min\left(A\right)=\frac{1}{2}\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của \(A=\frac{1}{2}\equiv x=-\frac{1}{2}\)
\(\equiv\)là tại nhé
k cho minh nha
Tìm GTNN của biểu thức A=/2x-1/+5
Ta có: \(A=\left|2x-1\right|+5\ge5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x-1\right|=0\Rightarrow x=\frac{1}{2}\)
Vậy Min(A) = 5 khi x = 1/2