\(lim\frac{1+2.3^n-7^n}{5^n+2.7^n}\)
9/ lim\(\left(7-3.3^n-2.7^n\right)\)
10/lim\(\frac{\sqrt{3n^2+1}-\sqrt{n^2-2}}{n+4}\)
11/ lim\(\frac{n^2+\sqrt[3]{1-n^6}}{\sqrt{n^4+1}-n^2}\)
12/ lim\(\frac{2.4^n+3.6^n}{7.6^n+7^n}\)
\(lim\frac{4^{n-1}+6^{n+2}}{5^n+2.7^n}\)
tìm \(lim\dfrac{1+2.3^n-7^n}{a+5^n+a.7^{n-1}}\)
\(\lim\dfrac{1+2.3^{n}-7^{n}}{a+5^{n}+a.7^{n-1}} =\lim\dfrac{(\dfrac{1}{7})^{n}+2.(\dfrac{3}{7})^{n}-1}{a.(\dfrac{1}{7})^{n}+(\dfrac{5}{7})^{n}+\dfrac{a}{7}} =\lim\dfrac{-1}{\dfrac{a}{7}} =\dfrac{-7}{a}\)
A. 3^n-1+2.3^n+1=8^2
b:1/5.3^n=7.3^2.9^2-2.3^n
C:7^n+2+2.7^n-1=345
tìm các giới hạn
a)lim(\(\sqrt{n+1}-\sqrt{n}\))
b)lim\(\left(\sqrt{n+5n+1}-\sqrt{n^2-n}\right)\)
c)lim\(\left(\sqrt{3n^2+2n-1}-\sqrt{3n^2-4n+8}\right)\)
d)lim\(\frac{2^n+6^n-4^{n+1}}{3^n+6^{n+1}}\)
e)lim\(\frac{3^n-4^n+5^n}{3^n+4^n-5^n}\)
f)lim\(\frac{1+3+5+.....+\left(2n+1\right)}{3n^2+4}\)
g)lim[\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n\left(n+1\right)}\)]
h)lim\(\frac{1^2+2^2+3^2+.....+n^2}{n\left(n+1\right)\left(n+2\right)}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
tìm giới hạn
lim\(\frac{2^n+4^n+5^n}{2.3^n+4^n-3.5^n}\)
lim\(\frac{2^n+4^n+5^n}{2.3^n+4^n+3.5^n}\)
=lim\(\frac{\left(\frac{2}{5}\right)^n+\left(\frac{4}{5}\right)^n+1}{2.\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-3}=-\frac{1}{3}\)
Tính lim \(\dfrac{5^n+2.3^n}{4.5^n+1}\)
Tính:
Câu 1: lim ( \(\frac{1}{\sqrt{n^2+1}}\) + \(\frac{1}{\sqrt{n^2+2}}\) + ... + \(\frac{1}{\sqrt{n^2+n}}\) )
Câu 2: lim ( \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{n\left(n+1\right)}\) )
Câu 3: lim ( \(\frac{1}{n^2}\) + \(\frac{3}{n^2}\) + \(\frac{5}{n^2}\) +...+ \(\frac{2n-1}{n^2}\) )
Câu 4: lim ( \(\sqrt{3+\frac{n^2-1}{3+n^2}}\) - \(\frac{\left(-1\right)^n}{2^n}\) )
Câu 5: lim \(\sqrt{\frac{cos2n}{3n}+9}\)
$n$ tiến đến đâu vậy bạn?
Câu 2:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)
Câu 3:
Ta biết rằng $\lim_{x\to \infty}\frac{1}{x}=0\Rightarrow \lim_{x\to \infty}\frac{a}{x}=0$ với $a\in\mathbb{R}$
Do đó:
$\lim_{n\to \infty}\frac{1}{n^2}=0$
$\lim_{n\to \infty}\frac{2}{n^2}=0$
.....
$\lim_{n\to \infty}\frac{2n-1}{n^2}=\lim_{n\to \infty}(\frac{2}{n}-\frac{1}{n^2})=\lim_{n\to \infty}\frac{2}{n}-\lim_{n\to \infty}\frac{1}{n^2}=0-0=0$
Do đó:
$\lim_{n\to \infty}(\frac{1}{n^2}+...+\frac{2n-1}{n^2})=\lim_{n\to \infty}\frac{1}{n^2}+....+\lim_{n\to \infty}\frac{2n-1}{n^2}=0+0+...+0=0$