tìm giá trị nhỏ nhất của \(A=\frac{x+7}{\sqrt{x}-3}\left(x>9\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x-3}}-\frac{3\left(\sqrt{x+3}\right)}{x-9}\right):\left(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\right).\)
a)rút gọn R
b)tìm các giá trị của x để R < -1
c)tìm các giá trị của x để giá trị của biểu thức R nhỏ nhất. Tìm giá trị nhỏ nhất đó.
aI CỨU ĐI...MÌNH THÍNH GẦN RA RỒI NHƯNG KẾT QUẢ SAI, AI GIÚP MÌNH MÌNH SẼ TÍCH <3
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Tìm giá trị nhỏ nhất của \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}-3}-1\right)\)
Cho P = \(\left(\frac{x-3\sqrt{x}}{x-6\sqrt{x}+9}-\frac{2\sqrt{x}-1}{x-3\sqrt{x}}\right).\frac{x-9}{\sqrt{x}+3}\)
a. Rút gọn biểu thức P
b. Tìm giá trị của P khi x = 0.25
c. Tìm giá trị nhỏ nhất của P
đk: \(x>0;x\ne9\)
a) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
b) Với x=0,25 ta có: \(P=\frac{\left(\sqrt{0,25}-1\right)^2}{\sqrt{0,25}}=0,5\)
c) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-2=2-2=0\)
Dấu '=' xảy ra khi x=1 (tmdk). Vậy Min p =0 khi và chỉ khi x=1
cho biểu thức P= \(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, rút gọn P
b, tìm giá trị nhỏ nhất của P
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
I). \(D=\)\(\left(\frac{x+3}{X-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
tìm giá trị của x để \(\frac{1}{D}\)nguyên
II). \(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)với x>=0
a). rút gọn E b). tìm giá trị của x để E= 8/9 c). tìm giá trị lớn nhất nhỏ nhất của E
I) Đk: x > 0 và x \(\ne\)9
\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)
<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)
<=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Với x\(\ge\)0; ta có:
\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)
<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))
Dấu "=" xảy ra<=> x = 0
Vậy MinE = 0 <=> x = 0
Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)
=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)
Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1
Vậy MaxE = 2/3 <=> x = 1
Edogawa Conan
câu 1 x không nguyên đâu bạn nhé, nên làm theo cách bạn là sai đấy
Bài 7: cho biểu thức: \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
a. rút gọn P
b. tìm các giá trị của x để P >0
c. tìm giá trị nhỏ nhất của \(\sqrt{P}\)
d. tìm giá trị của m để có giá trị x> 1 thỏa mãn : \(m\left(\sqrt{x}-3\right).P=12m\sqrt{x}-4\)
ai làm nhanh nhất mình tích cho 3 tick
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{4}\)
\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)
Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)
\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)
\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
cho biểu thức \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a,Tìm ĐKXĐ của A
b,Rút gon A
c,Tìm x để \(A\le\frac{-1}{3}\)
d.Tìm giá trị nhỏ nhất của A
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9
\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)
\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
a) ĐKXĐ : x>hoặc = 0 ; x khác 9
Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !
----------------- -Học tốt-----------------
Cho A = \(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, Rút gọn A
b, Tìm x để A < \(\frac{-1}{2}\)
c, Tìm giá trị nhỏ nhất của A