Tìm số nguyên tố n sẻ các biểu thức sau cùng là số nguyên tố:
a) A=(n-1)(n^2+9)
b) B=n^3-n^2+n-1
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
tìm tất cả các số tự nhiên n để các số sau là số nguyên tố:
a) A = n^2 − 4n + 3
b) B = n^4 + 4
cho biểu thức A=3/n+2
a) tìm các số nguyên n để biểu thức A là phân số
b) tìm các số nguyên n để A là 1 số nguyên
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
\(A=\frac{3}{n+2}\)
a) Để A là phân số => \(n+2\ne0\)=> \(n\ne-2\)
b) Để A là số nguyên => \(\frac{3}{n+2}\)là số nguyên
=> \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(n\in\left\{-1;-3;1;-5\right\}\)
1.Tìm số nguyên dương n sao cho n^2/60-n là một số nguyên tố.
2.Tính giá trị các biểu thức sau:
a,B=1.3+2.4+3.5+...+2013.2015
b,C=1.2.3+2.3.4+3.4.5+...+99.100.101
c,D=1^2+2^2+3^2+...+99^2+100^2
Cho biểu thức:3/ n-2
a) Tìm các số nguyên n để biểu thức a là phân số
b) Tìm các số nguyên n dể Alà 1 số nguyên
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 ≠ 0 => n ≠ 2
Để biểu thức \(\frac{3}{n-2}\) là phân số khi n - 2 = 1 hoặc n - 2 = 3 => n = 3 hoặc 5
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Bài tập 1: Số nguyên tố rút gọn của một số tự nhiên n chính là tổng các ước nguyên tố của n.
Ví dụ: n=252=2.2.3.3.7 (n có 3 ước nguyên tố là 2, 3 và 7)
Số nguyên tố rút gọn của n là 2+3+7=12
Yêu cầu: a/ Nhập số tự nhiên n từ bàn phím, in ra số nguyên tố rút gọn của n. (1<n<1000000)
b/ Nhập 2 số nguyên a, b không vượt quá 10000 (a<b). In ra các số có cùng số nguyên tố rút gọn với n trong đoạn a đến b và số lượng các số tìm được.
Cho biểu thức sau: B= 4/2-n
a) Tìm số nguyên n để B là phân số
b) Tìm phân số B biết n= -1 ; n= 3
c) Tìm số nguyên n để B là số nguyên
d) Tìm số nguyên n để B là số nguyên âm
Tìm n sao cho tổng các số sau là số nguyên tố cùng nhau:
a) n + 2 và n + 3 b) 2n + 1 và 9n + 4
a: \(\left\{{}\begin{matrix}n+2⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy: với mọi số nguyên n thì n+2 và n+3 là hai số nguyên tố cùng nhau